师资队伍



友情链接
山东大学

电子商务交易技术国家工程实验室

山大地纬软件股份有限公司
师资队伍


 职称:山东大学教授、博士生导师    

 联系方式:weileyi@sdu.edu.cn    

 个人经历:     

 2006.9 - 2010.6, 厦门大学,数学学院,学士

 2010.9 - 2013.6, 厦门大学,信息与科学技术学院,硕士

 2013.9 - 2016.6, 厦门大学,软件学院,博士

 2016.9 – 2019.12, 天津大学,计算机科学与技术学院,讲师

 2018.3 – 2019.4, 东京大学,医学科学研究所,特任研究员

 2020.01-至今,山东大学,软件学院

   


个人简介


魏乐义博士,软件学院教授。CCF 生物信息专委会委员,人工智能学会生物信息与人工生命专委会委员。ACM SIGBIO新星奖获得者。曾于东京大学医科学研究所从事博士后工作。主要研究工作集中在开发和利用人工智能方法对于生物信息学中的多个交叉前沿和热点问题进行探索和研究。在发表论文方面,至今总共发表近 60 篇高水平 SCI 论文,多篇入选 ESI 高被引及热点论文。发表论文累计影响因子超过400,被 Nature 等国际著名杂志引用2000余次,H-因子(Google)为 26。目前担任多个 SCI 期刊编委,以及多国际高水平 SCI 期刊的客座编辑, CCF-B 类会议 BIBM 的程序委员会成员。主持多项国家以及省部级自然科学基金项目。


课程教学


机器学习



科研项目  


· 国家自然科学基金面上项目, 基于人工智能的多肽药物识别与分析方法研究,2021/01-2024/1264万、在研、主持

· 国家自然科学基金青年项目, 基于深度学习的蛋白质折叠识别方法研究,2018/01-2020/1223万、在研、主持

· 天津市自然科学基金青年项目, 基于计算智能的蛋白质折叠结构预测问题研究,2018/04-2021/036万、在研、主持

· 药物化学生物学国家重点实验室开放基金, 蛋白质折叠的深度识别方法研究,2017/01-2017/125万、结题、主持

· 国家重点研发计划,精准医学大数据的有效挖掘与关键信息技术开发(课题5),2018-2021、骨干


代表性科研论文



[1].Zengyan Hong, Xiangxiang Zeng*, Leyi Wei*, Xiangrong Liu*. Identifying enhancer–promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.Bioinformatics, 2020. (SCI, JCR-2, IF2018=4.531)..[2].Jing Li, Leyi Wei, Fei Guo*, Quan Zou*. EP3: an ensemble predictor that accurately identifies type III secreted effectors. Briefings in bioinformatics, 2020. (SCI, JCR-1, IF2018=9.101)..

[3].Ran Su*, Jiahang Zhang, Xiaofeng Liu*, Leyi Wei*. Identification of expression signatures for non-small-cell lung carcinoma subtype classification. Bioinformatics, 2020. (SCI, JCR-2, IF2018=4.531)..

[4].Ran Su*, Huichen Wu, Xinyi Liu, Leyi Wei*.Predicting drug-induced hepatotoxicity based on biological feature maps and diverse classification strategies. Briefings in bioinformatics, 2019. (SCI, JCR-1, IF2018=9.101)..

[5].Leyi Wei, Ran Su, Shasha Luan, Zhijun Liao, Balachandran Manavalan*, Quan Zou*, Xiaolong Shi*. Iterative feature representations improve N4-methylcytosine site prediction.Bioinformatics, 2019. (SCI, JCR-2, IF2018=4.531)..

[6].Bing Rao, Chen Zhou, Guoying Zhang*, Ran Su*, Leyi Wei*. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Briefings in bioinformatics, 2019. (SCI, JCR-1, IF2018=9.101).

[7].Leyi Wei, Chen Zhou, Ran Su*, Quan Zou*. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics, 2019. (SCI, JCR-2, IF2018=4.531)..

[8].Fuyi Li*, Cunshuo Fan, Tatiana T Marquez-Lago, André Leier, Jerico Revote, Cangzhi Jia, Yan Zhu, A Ian Smith, Geoffrey I Webb, Quanzhong Liu*, Leyi Wei*, Jian Li, Jiangning Song*PRISMOID: a comprehensive 3D structure database for post-translational modifications and mutations with functional impact. Briefings in bioinformatics, 2019. (SCI, JCR-1, IF2018=9.101)..

[9].Ran Su, Xinyi Liu, Guobao Xiao*, Leyi Wei*. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction. Briefings in bioinformatics, 2019. (SCI, JCR-1, IF2018=9.101)..

[10].Ran Su, Xinyi Liu, Leyi Wei*. MinE-RFE: determine the optimal subset from RFE by minimizing the subset-accuracy–defined energy. Briefings in bioinformatics, 2019. (SCI, JCR-1, IF2018=9.101)..

[11].B. Manavalan, S. Basith, T.H. Shin, Leyi Wei*, G. Lee*. mAHTPred: a sequence-based meta predictor for improving the prediction of antihypertensive peptides using effective feature representation. Bioinformatics. 2018. (SCI, JCR-2, IF2016=7.307)..

[12].Ran Su, Jie Hu, Quan Zou, Balachandran Manavalana*, and Leyi Wei*, Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Briefings in Bioinformatics. 2018. (SCI, JCR-1, IF2017=6.302)..

[13].Leyi Wei, Jie Hu, Fuyi Li, Jiangning Song*, Ran Su*, and Quan Zou*. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. Briefings in Bioinformatics. 2018. (SCI, JCR-1, IF2017=6.302)..

[14].Leyi Wei, Shasha Luan, Luis Augusto Eijy Nagai, Ran Su*, and Quan Zou*. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species.Bioinformatics. 2018. (SCI, JCR-2, IF2016=7.307)