
Data Serving Systems in
Cloud Computing Platforms

Sudipto Das
eXtreme Computing Group (XCG),

Microsoft Research (MSR)

Day 1 Afternoon Session

RETHINKING
EVENTUAL
CONSISTENCY

July 28, 2013 VLDB Summer School 2013 2

In a replicated database, updates arrive
in different orders at different copies of
a data item,

but eventually

the copies converge to the same value.

3July 28, 2013 VLDB Summer School 2013

Origin: Thomas’ majority consensus algorithm,
published in 1979 (ACM TODS).

Was used in Grapevine (PARC, early 1980’s)
and in numerous systems since then.

Doug Terry et al. coined the term in a 1994
Bayou paper

Werner Vogels at Amazon promoted it in
Dynamo (2007)

Cover topic of February 2012 IEEE Computer

4July 28, 2013 VLDB Summer School 2013

Most of what we’ll say was known in 1995

There are many published surveys
But this talk has a rather different spin

We’ll often cite old references to remind you
where the ideas came from

5July 28, 2013 VLDB Summer School 2013 5

Ideally, replication is transparent

In the world of transactions:
One-Copy Serializability - The system behaves like a
serial processor of transactions on a one-copy database
[Attar, Bernstein, & Goodman, IEEE TSE 10(6), 1984]

In the world of operations:
Linearizability - A system behaves like a serial processor
of operations on a one-copy database
[Herlihy & Wing, ACM TOPLAS 12(3), 1990]

6July 28, 2013 VLDB Summer School 2013

But you can’t in many practical situations

Let’s review the three main types of solutions

Primary Copy

Multi-Master

Consensus Algorithms

7July 28, 2013 VLDB Summer School 2013

Only the primary copy is
updatable by clients

Updates to the primary flow
downstream to secondaries

What if there’s a network
partition?

Clients that can only access
secondaries can’t run updates

8

Primary

Client
updates

Downstream
updates

Secondary copies

[Alsberg & Day, ICSE 1976] [Stonebraker & Neuhold, Berkeley Workshop 1979]

July 28, 2013 VLDB Summer School 2013

Copies are independently
updatable

Conflicting updates on
different copies are allowed

Doesn’t naturally support 1SR.

To ensure eventual consistency
or linearizability of copies:

Either updates are designed to
be commutative

Or conflicting updates are
detected and merged

9

Client
updates

Downstream updates

Client
updates

• “The partitioned DB problem” in late 1970’s.
• Popularized by Lotus Notes, 1989

July 28, 2013 VLDB Summer School 2013

Copies can be a replicated-state machine
Essentially, a serial processor of operations
Can be primary-copy or multi-master

Uses quorum consensus to achieve 1SR or linearizability.
Ensures conflicting ops access at least one copy in common

10
Write quorum = 4

Read quorum = 2

Each downstream update
is applied to a quorum of
secondaries

Secondaries

Primary

July 28, 2013 VLDB Summer School 2013

You can have only two of Consistency-of-Replicas,
Availability, and Partition-Tolerance

Can get C & A, if there’s no partition

Can get C & P but only one partition can accept updates

Can get A & P, but copies in different partitions won’t be
consistent

11

Conjecture by [Brewer, PODC 2000]
Proved by [Gilbert & Lynch, SIGACT News 33(3) 2002]

July 28, 2013 VLDB Summer School 2013

“Partitioning - When communication failures break all
connections between two or more active segments of the
network ... each isolated segment will continue …
processing updates, but there is no way for the separate
pieces to coordinate their activities. Hence … the database
… will become inconsistent. This divergence is unavoidable
if the segments are permitted to continue general
updating operations and in many situations it is essential
that these updates proceed.”

[Rothnie & Goodman, VLDB 1977]

So the CAP theorem isn’t new, but it does focus attention
on the necessary tradeoff

12July 28, 2013 VLDB Summer School 2013

Parallel snapshot isolation
Consistent prefix
Monotonic reads
Timeline consistency
Linearizability
Eventually consistent
transactions

Causal consistency
Causal+ consistency
Bounded staleness
Monotonic writes
Read-your-writes
Strong consistency

13

• There have been many attempts at defining stronger
but feasible consistency criteria:

July 28, 2013 VLDB Summer School 2013

We’ll try to eliminate the confusion by

Characterizing consistency criteria

Describing mechanisms that support each one

And summarizing their strengths and weaknesses

14July 28, 2013 VLDB Summer School 2013

There are many excellent surveys of replication
We don’t claim ours is better, just different

S.B. Davidson, H. Garcia-Molina, D. Skeen: Consistency in Partitioned Networks.
ACM Computing Surveys. Sept. 1985
S-H Son: Replicated data management in distributed database systems,
SIGMOD Record 17(4), 1988.
Y. Saito, M. Shapiro: Optimistic replication. ACM Comp. Surveys. Jan. 2005
P. Padmanabhan, et al.: A survey of data replication techniques for mobile ad
hoc network databases. VLDB Journal 17(5), 2008
D.B. Terry: Replicated Data Management for Mobile Computing.
Morgan & Claypool Publishers 2008
B. Kemme, G. Alonso: Database Replication: a Tale of Research across
Communities. PVLDB 3(1), 2010
B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez: Database Replication.
Morgan & Claypool Publishers 2010

15July 28, 2013 VLDB Summer School 2013

There’s a huge literature on replication.
Please tell us if we missed something important

We’ll cover replication mechanisms in database systems,
distributed systems, programming languages, and
computer-supported cooperative work

We won’t cover mechanisms in computer architecture

16July 28, 2013 VLDB Summer School 2013

Multi-master is designed to handle partitions

With primary copy, during a partition
Majority quorum(x) = partition with a quorum of x’s
copies
Majority quorum can run updates and satisfy all
correctness criteria
Minority quorum can run reads but not updates,
unless you give up on consistency

So an updatable minority quorum is just like
multi-master

17July 28, 2013 VLDB Summer School 2013

Eventual consistency – there are many good ways
to achieve it

For isolation and session goals, the solution space
is more complex

Strengthens consistency, but complicates
programming model
Improves availability, but not clear by how much
If a client rebinds to another server, ensuring these
goals entails more expense, if they’re attainable at all.
No clear winner

18July 28, 2013 VLDB Summer School 2013

App needs to cope with arbitrary states during a
partition
Offer a range of isolation and session guarantees
and let the app developer choose among them

Possibly worthwhile for distributed systems experts
Need something simpler for “ordinary programmers”

Encapsulate solutions that offer good isolation for
common scenarios

Use data types with commutative operations
Convergent merges of non-commutative operations
Scenario-specific classes

19July 28, 2013 VLDB Summer School 2013

20

Partition?

Consistent & Available

N

Y

Start here

Not available
for update
transactions

We’ll start with the world of operations, and
then look at the world of transactions

July 28, 2013 VLDB Summer School 2013

21

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Not available
for updates

The partition with a quorum of replicas can
run writes

VLDB Summer School 2013July 28, 2013

22

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Not available
for updates

To do better,
we need to
give up on
consistency

July 28, 2013 VLDB Summer School 2013

Eventual consistency is one popular proposal

The copies will be identical … someday
App still needs to handle arbitrary intermediate states

How to get it
Commutative downstream operations
Mergeable operations
Vector clocks

23July 28, 2013 VLDB Summer School 2013

[Thomas, ACM TODS 4(2), 1979]

Assign a timestamp to each client write
operation

Each copy of x stores
timestamp(last-write-applied)

Apply downstream-write(x) only if
downstream-write(x).timestamp > x.timestamp

So highest-timestamp wins at every copy

24

Final value:
X=70, TS:5

W(X=40), TS:1
W(X=70), TS:5
W(X=30), TS:3

Downstream writes
arrive in this order

Thomas’ Write Rule:

July 28, 2013 VLDB Summer School 2013

Pros
Updates can be applied
anywhere, anytime
Downstream updates
can be applied in any
order after a partition is
repaired

Cons
Doesn’t solve the problem
of ordering reads & updates
For fairness, requires
loosely-synchronized clocks

25July 28, 2013 VLDB Summer School 2013

Convergent & Commutative Replicated Data Types
[Shapiro et al., INRIA Tech. Report, Jan 2011]

Set operations add/remove don’t commute,

[add(E), add(E), remove(E)]≢ [add(E), remove(E), add(E)]

But for a counting set, they do commute
Each element E in set S has an associated count
Add(set S, element E) increments the count for E in S.
Remove(S, E) decrements the count

26July 28, 2013 VLDB Summer School 2013

Pros
Updates can be applied
anywhere, anytime
Downstream updates
can be applied in any
order after a partition is
repaired

Cons
Constrained, unfamiliar
programming model

Doesn’t solve the problem of
ordering reads & updates

Some app functions need
non-commutative updates

27July 28, 2013 VLDB Summer School 2013

Custom merge procedures for downstream operations
whose client operations were not totally ordered.

Takes two versions of an object and creates a new one

For eventual consistency, merge must be commutative
and associative
Notation: M(O2, O1) merges the effect of O2 into O1

Commutative: O1 M(O2, O1)  O2 M(O1, O2)
Associative: M(O3, O1M(O2, O1))  M(M(O3, O2)  O1)
[Ellis & Gibbs, SIGMOD 1989]

28July 28, 2013 VLDB Summer School 2013

Pros
Enables concurrent
execution of conflicting
operations without the
synchronization expense
of total-ordering

Cons
Requires application-
specific logic that’s hard
to generalize

29July 28, 2013 VLDB Summer School 2013

In multi-master, each copy assigns a monotonically
increasing version number to each client update
Vector clock is an array of version numbers, one per copy

Identifies the set of updates received or applied

Use it to identify the state that a client update depends
on and hence overwrote

If two updates conflict but don’t depend on one another,
then merge them.

30

• [Fischer & Michael, PODS 1982]
• [Parker et al., IEE TSE 1983]
• [Wuu & Bernstein, PODC 1984]

July 28, 2013 VLDB Summer School 2013

Ci

Update1[x]

Ck

Update2[x]

w1[x]

Cm

w2[x]

w1[x] Discard
or Merge?

31July 28, 2013 VLDB Summer School 2013

A vector clock can be used to identify the state that a client
update depends on (“made-with knowledge”)

32

[Ladin et al., TOCS, 1992]
[Malkhi & Terry, Dist. Comp. 20(3), 2007]

– If VC1[k]≥ vn2, then x2 was “made from” x1 & should overwrite it

– If VC2[i]≥ vn1, then x1 was “made from” x2, so discard x2

– Else the updates should be reconciled

x1:[[k,vn2], VC2]

Copy Cm

Produced by client update u2 at copy Ck

Produced by client update u1 at copy Ci

x2:[[i,vn1], VC1]
Downstream-write sent to Cm

A copy can use it to identify the updates it has received
When it syncs with another copy, they exchange vector clocks
to tell each other which updates they already have.

Avoids shipping updates the recipient has already seen
Enables a copy to discard updates that it knows all other
copies have seen

33July 28, 2013 VLDB Summer School 2013

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Ops are
commutative
or mergeable

Y N

Not available
for updates

Eventually Consistent
& Available

34July 28, 2013 VLDB Summer School 2013

Admissible executions
Causality constraints
Session constraints

35The case we can strengthen

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Ops are
commutative
or mergeable

Y N

Not available
for updates

Eventually Consistent
& Available

VLDB Summer School 2013July 28, 2013

Definition – The sequence of operations on each replica is
consistent with session order and reads-from order.

Example: User 1 stores a photo P and a link L to it.
If user 2 reads the link, then she’ll see the photo.
Causality imposes write-write orders

Causal relationships:
WW Session order: w1[y] executes after w0[x] in session S

WR Session order: w3[z] executes after r2[y] in session V

Reads-from order: r2[y] in session V reads from w1[y] in session S

Causality is transitive: Hence, w0[x] causally precedes w3[z]

36

S

w1[y]

w0[x]

V

r2[y]

w3[z]

[Lamport, CACM 21(7), 1978]VLDB Summer School 2013July 28, 2013

If all atomic operations preserve database integrity,
then causal consistency with eventual consistency
may be good enough

Store an object, then a pointer to the object
Assemble an order and then place it
Record a payment (or any atomically-updatable state)

Scenarios where causal consistency isn’t enough
Exchanging items: Purchasing or bartering require each party
to be credited and debited atomically
Maintaining referential integrity: One session deletes an
object O while another inserts a reference to O

37July 28, 2013 VLDB Summer School 2013

Enforce it using dependency tracking and vector clocks

COPS: Causality with convergent merge [Lloyd et al.,
SOSP 2011]

Assumes multi-master replication
Session context (dependency info) = <data item, version#> of
the last items read or of the last item written.
Each downstream write includes its dependent operations.
A write is applied to a copy after its dependencies are satisfied
Merge uses version vectors
With additional dependency info, it can support snapshot reads
Limitation: No causal consistency if a client rebinds to another
replica due to a partition

38July 28, 2013 VLDB Summer School 2013

Read your writes – a read sees all previous writes

Monotonic reads – reads see progressively later states

Monotonic writes – writes from a session are applied
in the same order on all copies

Consistent prefix – a copy’s state only reflects writes
that represent a prefix of the entire write history

Bounded staleness – a read gets a version that was
current at time t or later

39

[Terry et al., PDIS 1994]
July 28, 2013 VLDB Summer School 2013

Client session maintains IDs of reads and writes
 Accurate representation of the constraints
 High overhead per-operation

Client session maintains vector clocks for the last
item read or written
 Compact representation of the constraints
 Conservative

40July 28, 2013 VLDB Summer School 2013

The operation world ignores
transaction isolation
To get the benefits of
commutative or mergeable
operations, need a weaker
isolation level

Partition?

Consistent
& Available

N

Y

Y N

Start here

Quorum
of replicas?

41July 28, 2013 VLDB Summer School 2013

Read committed
Transaction reads committed values

Snapshot reads
Transaction reads committed values that were
produced by a set of committed transactions
All of a transaction’s updates must be installed
atomically to ensure the writeset is consistent
in the minority partition

42July 28, 2013 VLDB Summer School 2013

People do it all the time for better performance
Throughput of Read-Committed is 2.5x to 3x that of Serializable

Weaker isolation produces errors. Why is this OK?

No one knows, but here are some guesses:
DB's are inconsistent for many other reasons.

Bad data entry, bugs, duplicate txn requests, disk errors, ….
Maybe errors due to weaker isolation levels are infrequent
When DB consistency matters a lot, there are external controls.

People look closely at their paychecks
Financial information is audited
Retailers take inventory periodically

43July 28, 2013 VLDB Summer School 2013

44

Partition?

Quorum of
replicas?

Y

N

Start here

Ops are
commutative
or mergeable

Y N

Not available
for updates

Read
Committed or

Snapshot Reads

Y N

Consistent
& Available

N
Y

Eventually
Consistent
& Available

July 28, 2013 VLDB Summer School 2013

Admissible executions
Causality constraints
Session constraints
Isolation constraints

RedBlue Consistency [Li et al., OSDI 2012]
1-SR, Read-committed, Snapshot Isolation
Parallel Snapshot Isolation [Sovran et al, SOSP 2011]
Concurrent Revisions [Burckhardt et al., ESOP 2012]

45July 28, 2013 VLDB Summer School 2013

Blue operations commute with all other operations and
can run in different orders on different copies.
Red ones must run in the same order on all copies.
Use a side-effect-free generator operation to transform
a red operation to a blue one that is valid in all states
Example

Deposit(acct, amt): acct.total = acct.total + amt
EarnInterest(acct): acct.total = acct.total * 1.02
Deposit is blue, EarnInterest is red
Transform EarnInterest into:

Interest = acct.total * 1.02 // runs locally at acct’s copy
Deposit(acct, Interest) // blue operation runs at all copies

4646[Li et al., OSDI 2012] VLDB Summer School 2013July 28, 2013

The history is equivalent to one of this form:

47

r1[readset1] w1[writeset1]
  r2[readset2]

r3[readset3]

w2[writeset2]

w3[writeset3]

r4[readset4] w4[writeset4]

r5[readset5]

r6[readset6]

w5[writeset5]

w6[writeset6]

ws1 ws2 ws3 = ws4 ws5 ws6 =

Benefit of SI: Don’t need to test read-write conflicts

July 28, 2013 VLDB Summer School 2013

48

Transaction
Boundaries

Two threads with
non-overlapping writesets

Merge updates of
two threads

• Parallel SI - Execution is equivalent to one that allows
parallel threads with non-conflicting writesets running SI

• Allows a transaction to read stale copies

[Sovran, Power, Aguilera, & Li, SOSP 2011]

July 28, 2013 VLDB Summer School 2013

Site 1 Site 2
r1(x,y) r3(x,y)
w1(x) w3(y)
c1 c3

r2(x,y) r4(x,y)
w2(x) w4(y)
c2 c4

w3[y] w1[x]
w4[y] w2[x]

49

• But the result is not
equivalent to
T1 T2 T3 T4 or
T3 T4 T1 T2 or

T1 T2
T3 T4   

• A parallel SI execution
may not be equivalent to
a serial SI history

• Site 1 and Site 2 are
each snapshot isolated.

Site 1 has x’s primary
Site 2 has y’s primary

July 28, 2013 VLDB Summer School 2013

Each arrow is an operation or transaction
A fork defines a new private snapshot and a branch
A join causes all updates on the branch to be applied
Ops are pure reads or pure writes. Writes never fail.

[Burckhardt, et al., ESOP 2012]

50

Mainline

Branches

July 28, 2013 VLDB Summer School 2013

51

Partition?

Quorum of
replicas?

Y

N

Start here

Y N

Not available
for updates

Y
N

Consistent
& Available

N
Y

Eventually
Consistent
& Available

Ops are
commutative
or mergeable

Other
Isolation

Levels

Y

Read
Committed or

Snapshot Reads
N

July 28, 2013 VLDB Summer School 2013

RETURNING TO CAP …

52July 28, 2013 VLDB Summer School 2013

If the system guarantees only eventual consistency,
then be ready to read nearly arbitrary database states.

Use commutative operations whenever possible.
System needn’t totally order downstream writes, which
reduces latency

Else use convergent merges of non-commutative ops
Enables updates during partitioned operation and in multi-
master systems

53July 28, 2013 VLDB Summer School 2013

If availability and partition-tolerance are required,
then consider strengthening eventual consistency
with admissibility criteria

If possible, use consistency-preserving operations,
in which case causal consistency is enough

Hard case for all admissibility criteria is rebinding a
session to a different replica

Replica might be older or newer than the previous one it
connected to.

54July 28, 2013 VLDB Summer School 2013

55

Primary Copy or
Quorum-based

Multi-
master

Primary Copy or
Quorum-based

Multi-
master

   ?W  ?W
    ?W
   

   

   ?R  ?R

   

Session maintains
connection to server

Session migrates to
another replica

Read-Your-Writes

Monotonic Writes

Bounded staleness

Consistent Prefix

Monotonic Reads

Causality

?W: Only if the session caches its writes
?R: Only if the session caches its reads

Writes disabled
July 28, 2013 VLDB Summer School 2013

Encapsulate solutions that offer good isolation for
common scenarios

Commutative Replicated Data Types
Convergent merges of non-commutative operations
Research: Scenario-specific design patterns

Overbooking with compensations
Queued transactions
  

56July 28, 2013 VLDB Summer School 2013

Probably not to enterprise developers

Spanner [OSDI 2012] “Many applications at Google …
use Megastore because of its semi-relational data
model and support for synchronous replication,
despite its relatively poor write throughput.”

Mike Stonebraker [blog@ACM, Sept 2010]:
“No ACID Equals No Interest” for enterprise users

57July 28, 2013 VLDB Summer School 2013

The design space does matter to Einstein-level
developers of high-value applications that need
huge scale out.

58July 28, 2013 VLDB Summer School 2013

Eventual consistency
Commutative
operations

Thomas’ write rule
Convergent data types

Custom merge
Vector clocks

Admissible executions
Causality constraints
Session constraints

Read your writes
Monotonic reads
Monotonic writes
Consistent prefix
Bounded staleness

Isolation constraints

59July 28, 2013 VLDB Summer School 2013

SCALE-OUT
TRANSACTION
PROCESSING

July 28, 2013 VLDB Summer School 2013 60

Two approaches to scalability
 Scale-up

◦ Preferred in classical
enterprise setting (RDBMS)

◦ Flexible ACID transactions
◦ Transactions access a single node

 Scale-out
◦ Cloud friendly (Key value

stores)
◦ Execution at a single server
 Limited functionality & guarantees

◦ No multi-row or multi-step
transactions

VLDB Summer School 2013 61July 28, 2013

App
Server

App
Server

App
Server

Scaling in the Cloud

Load Balancer (Proxy)

App
Server

MySQL
Master DB

MySQL
Slave DB

Replication

Client Site

App
Server

Client Site Client Site

VLDB Summer School 2013 62July 28, 2013

Key Value Stores

Apache
+ App
Server

Apache
+ App
Server

Apache
+ App
Server

Scaling in the Cloud

Load Balancer (Proxy)

Apache
+ App
Server

Client Site

Apache
+ App
Server

Client Site Client Site

Scalable and Elastic,
but limited consistency and

operational flexibility
VLDB Summer School 2013 63July 28, 2013

Blog Wisdom
 “If you want vast, on-demand scalability, you need a

non-relational database.” Since scalability
requirements:
◦ Can change very quickly and,
◦ Can grow very rapidly.

 Difficult to manage with a single in-house RDBMS
server.

 RDBMS scale well:
◦ When limited to a single node, but
◦ Overwhelming complexity to scale on multiple server

nodes.

VLDB Summer School 2013 64July 28, 2013

The “NoSQL” movement
 Initially used for: “Open-Source relational database that did

not expose SQL interface”

 Popularly used for: “non-relational, distributed data stores
that often did not attempt to provide ACID guarantees”

 Gained widespread popularity through a number of open
source projects
◦ HBase, Cassandra,Voldemort, MongDB, …

 Scale-out, elasticity, flexible data model, high availability

VLDB Summer School 2013 65July 28, 2013

NoSQL has no relation with SQL
- Micheal Stonebraker [CACM Blog]

 Term heavily used (and abused)
 Scalability and performance bottleneck not

inherent to SQL
◦ Scalability, auto-partitioning, self-manageability

can be achieved with SQL

 Different implementations of SQL engine for
different application needs
 SQL provides flexibility, portability

VLDB Summer School 2013 66July 28, 2013

No-SQL Not Only SQL

 Recently renamed
 One size does not fit all
 Encompass a broad category of “structured”

storage solutions
◦ RDBMS is a subset
◦ Key Value stores
◦ Document stores
◦ Graph database

 The debate on appropriate characterization
continues

VLDB Summer School 2013 67July 28, 2013

Why care about transactions?

68

confirm_friend_request(user1, user2)
{
begin_transaction();
  update_friend_list(user1, user2, status.confirmed);
  update_friend_list(user2, user1, status.confirmed);
end_transaction();
}

Simplicity in application design
with ACID transactions

VLDB Summer School 2013July 28, 2013

Sacrificing Consistency
Handle failures

VLDB Summer School 2013 69

confirm_friend_request_A(user1, user2) {
try {

update_friend_list(user1, user2, status.confirmed);
} catch(exception e) {

report_error(e);
return;

}
try {

update_friend_list(user2, user1, status.confirmed);  
} catch(exception e) {

revert_friend_list(user1, user2);
report_error(e);
return;

}
}

July 28, 2013

confirm_friend_request_B(user1, user2) {
try{
  update_friend_list(user1, user2, status.confirmed);
} catch(exception e) {
  report_error(e);
  add_to_retry_queue(operation.updatefriendlist, user1, user2, current_time());
 }

try {
  update_friend_list(user2, user1, status.confirmed);
} catch(exception e) {
  report_error(e);
  add_to_retry_queue(operation.updatefriendlist, user2, user1, current_time());

}
}

Sacrificing Consistency
Ensuring persistence

VLDB Summer School 2013 70July 28, 2013

71

confirm_friend_request_A(user1, user2) {
try {

update_friend_list(user1, user2, status.confirmed);
} catch(exception e) {

report_error(e);
return;

}
try {

update_friend_list(user2, user1, status.confirmed);  
} catch(exception e) {

revert_friend_list(user1, user2);
report_error(e);
return;

}
}

confirm_friend_request_B(user1, user2) {
try{
  update_friend_list(user1, user2, status.confirmed);
} catch(exception e) {
  report_error(e);
  add_to_retry_queue(operation.updatefriendlist, user1, user2, current_time());
 }

try {
  update_friend_list(user2, user1, status.confirmed);
} catch(exception e) {
  report_error(e);
  add_to_retry_queue(operation.updatefriendlist, user2, user1, current_time());
}

}

VLDB Summer School 2013July 28, 2013

Scale-out Transaction Processing

 Transactions on co-located data

 Transactions on distributed data

July 28, 2013 VLDB Summer School 2013 72

DESIGN PRINCIPLES
(REVISITED)

VLDB Summer School 2013 73July 28, 2013

Design Principles

 Separate System and Application State
◦ System metadata is critical but small
◦ Application data has varying needs
◦ Separation allows use of different class of protocols

July 28, 2013 74VLDB Summer School 2013

Design Principles
 Decouple Ownership from Data Storage

◦ Ownership is exclusive read/write access to data
◦ Decoupling allows lightweight ownership migration

July 28, 2013 75

Cache ManagerCache Manager

Transaction
Manager

Transaction
Manager

RecoveryRecovery

Ownership
[Multi-step transactions or

Read/Write Access]

Ownership
[Multi-step transactions or

Read/Write Access]

Storage

Classical DBMSs Decoupled ownership and
Storage

VLDB Summer School 2013

Design Principles
 Limit most interactions to a single node

◦ Allows horizontal scaling
◦ Graceful degradation during failures
◦ No distributed synchronization

July 28, 2013 76Thanks: Curino et al VLDB 2010VLDB Summer School 2013

Design Principles

 Limited distributed synchronization is
practical
◦ Maintenance of metadata
◦ Provide strong guarantees only for data that needs it

July 28, 2013 77VLDB Summer School 2013

Challenge: Transactions at Scale

78

Sc
al

e-
ou

t

ACID transactions

Key Value Stores

RDBMSs

VLDB Summer School 2013July 28, 2013

Transactions on Co-located Data
 Data or Ownership Co-location

◦ Static partitioning
 Leveraging schema patterns
 Graph-based partitioning techniques

◦ Application-specified dynamic partitioning
 Transaction Execution
 Data storage

◦ Coupled storage
◦ Decoupled storage

 Replication
◦ Explicit Replication
◦ Implicit Replication

July 28, 2013 VLDB Summer School 2013 79

Data or Ownership Co-location

 Co-located ownership or data frequently
accessed together within a transaction
◦ Minimize distributed synchronization

 Two design patterns
◦ Static partitioning
 Statically partition data based on schema patterns of

applications’ access patterns

◦ Dynamic partitioning
 Leverage application hints

July 28, 2013 VLDB Summer School 2013 80

Static Partitioning

 Identify common schema design patterns
across a class of applications
 Design applications conforming to these

patterns by limiting data items accessed
within a transaction
 Statically define the granule of transactional

access
 Co-locate data (or ownership) of this

granule

July 28, 2013 VLDB Summer School 2013 81

Leveraging Schema Patterns

 Hierarchy of objects or tables
 Transactions access data items forming this

hierarchy
 Three common variants explored in

literature
◦ Tree Schema
◦ Entity Groups
◦ Table Groups

July 28, 2013 VLDB Summer School 2013 82

Tree Schema
 Tree types of tables

◦ Primary
◦ Secondary
◦ Global
 Primary forms the

root of the tree
◦ Only one primary

per schema
◦ Key of primary acts

as partitioning key

July 28, 2013 VLDB Summer School 2013 83

Tree Schema

 Secondary table
have primary table’s
key as foreign key
 Global tables are

lookup tables that
are mostly read-only
 A schema can have

multiple secondary
and global tables

July 28, 2013 VLDB Summer School 2013 84

Tree Schema
 Corresponding to every

row in the primary table,
there are a group of
related rows in the
secondary tables
◦ All rows referencing the

same key form a row group
 All rows in a row group

can be co-located
 Global tables replicated
 Transactions only access a

row group or global
tables

July 28, 2013 VLDB Summer School 2013 85

Tree Schema (example)

July 28, 2013 VLDB Summer School 2013 86

The TPC-C Schema is a tree schema

Entity Groups

 Each schema consists or a set of tables
 Each table is comprised of a set of entities
 Each entity contains a set of properties

which are named and typed columns
 Each table is either an entity group root table

or a child table

July 28, 2013 VLDB Summer School 2013 87

Entity Groups

 Each child has a foreign key relationship with
the root
 Each child entity refers to exactly one root

entity
 A root entity along with all child entities that

reference it form an entity group
All entities forming a group can be co-located
for efficient transactional access

July 28, 2013 VLDB Summer School 2013 88

Entity Groups

July 28, 2013 VLDB Summer School 2013 89

Entity group schema pattern Photo App example

Table Groups
 A generalization of the tree schema and entity

groups
 Table group consists of a set of tables
 Keyed table group

◦ Partition key similar to entity groups/tree schema
◦ All tables have column named partition key
◦ Partition key need not be unique
◦ All rows with same partition key form a row group
◦ A partition is a set of row groups

 Keyless table group
◦ More amorphous and more general

July 28, 2013 VLDB Summer School 2013 90

Discussion
 Hierarchical schema patterns allow data co-

location
 Limit most, if not all, interactions to a single

partition
 Multi-partition transactions can still be

supported, but with higher cost
◦ Distributed transactions

 Define a small unit of data as granule for
consistent and transactional data access
◦ Tight coupling within granules and loose coupling

across granules

July 28, 2013 VLDB Summer School 2013 91

Access-driven Database Partitioning

 Analyze applications’ access patterns
 Identify data items which, when co-located

within a partition, will limit most
transactions to a single partition
 Partition an application’s data by analyzing its

workload

July 28, 2013 VLDB Summer School 2013 92

Schism – Graph-based partitioning

 A graph-based, data driven partitioning
system for transactional workloads
 A database and its workload using a

graph, where tuples nodes and
transactions edges connecting the tuples
 Partitioning the graph minimum-cut

partitioning of the graph into k partitions.

VLDB Summer School 2013 93July 28, 2013

Overview of the Partitioning
Algorithm
 Data pre-processing

◦ Input transaction traces
◦ Read and write sets
 Modeling interactions as a graph

◦ Tuples (or rows) form nodes; accesses are edges
 Partitioning the graph

◦ Balanced min-cut partitioning
 Explaining the partitioning

◦ Learn a decision tree on frequent set of
attributes

July 28, 2013 VLDB Summer School 2013 94

Graph Representation

VLDB Summer School 2013 95July 28, 2013

Factoring in Replication

VLDB Summer School 2013 96July 28, 2013

What if partitions are not static?

 Access patterns change, often rapidly
◦ Online multi-player gaming applications
◦ Collaboration based applications

 Not amenable to static partitioning

 How to co-locate transaction execution
when accesses do not statically partition?

97July 28, 2013 VLDB Summer School 2013

Online multi-player games

98

Player Profile

ID Name $$$ Score

July 28, 2013 VLDB Summer School 2013

Transactional access to a game

99

Execute transactions
on player profiles while
the game is in progress

July 28, 2013 VLDB Summer School 2013

Dynamics of gaming

100

Partitions/groups
are dynamic

July 28, 2013 VLDB Summer School 2013

Scale of multi-player games

101

Hundreds of thousands
of concurrent groups

July 28, 2013 VLDB Summer School 2013

The Key Group abstraction

 Allow applications to dynamically specify a
group of data items

 Support transactional access to the group
formed on-demand

 Challenge: Avoid distributed transactions!

 Properties of key groups
◦ Small number of data items

◦ Execute non-trivial no. of transactions

◦ Dynamic and on-demand

102July 28, 2013 VLDB Summer School 2013

Players in a game form a group

103

Ownership
of keys at a
single node

 One key selected as the
leader

 Followers transfer
ownership of keys to leader

Grouping Protocol

July 28, 2013 VLDB Summer School 2013

Summary

 Techniques to co-locate data and/or
ownership to limit transactions to a single
node
 Hierarchical schema patterns

◦ Tree schema
◦ Entity groups
◦ Table groups

 Access-driven partitioning
 Application-specified dynamic partitioning

July 28, 2013 VLDB Summer School 2013 104

Transaction Execution
 Once ownership is co-located, classical

transaction processing techniques can be
used
◦ Leverage decades of research on concurrency

control and recovery
 Concurrency control

◦ Lock-based techniques
◦ Optimistic concurrency control
 Recovery

◦ Relies on logging. UNDO and/or REDO logging

July 28, 2013 VLDB Summer School 2013 105

Data Storage

 Conceptually, efficient non-distributed
transaction execution only needs co-located
ownership

 Two alternatives for physical data storage

◦ Coupled Storage

◦ Decoupled Storage

July 28, 2013 VLDB Summer School 2013 106

Coupled Storage
 Coupling storage with computation is a

classical design choice for data intensive
systems
◦ Popularly known as the shared-nothing

architecture
◦ Improves performance by eliminating network

transfers
 Side effect of co-locating ownership is that

data items of a partition are also physically
co-located

July 28, 2013 VLDB Summer School 2013 107

Decoupled Storage

 Data ownership is decoupled from the
physical storage of data
◦ Enablers: Growing main memory sizes and low

latency high throughput data center networks
◦ Rationale:
 Working set typically fits in main memory for most

OLTP systems
 Large main memories can fit even larger working sets
 Fast networks allow quick access to infrequent cache

misses

July 28, 2013 VLDB Summer School 2013 108

Decoupled Storage Architecture

July 28, 2013 VLDB Summer School 2013 109

LogTransaction Manager

Cache Manager
Ownership
layer

Data storage
layer

Asynchronous update
Propagation

Benefits of Decoupled Storage

 Results in simplified design
◦ Allows the storage layer to focus on fault-

tolerance
◦ Ownership layer can provide higher-level

guarantees

 Allows independent scaling of the ownership
and data storage layer
 Allows lightweight migration of ownership

for elastic scaling and load balancing

July 28, 2013 VLDB Summer School 2013 110

Decoupled Storage Architectures

 Two alternative approaches explored in
literature
◦ Managed storage layer
 Transaction manager controls the physical layout and

format
 The storage layer exposes an abstraction of a

distributed replicated block storage

◦ Self-managed storage layer
 Transaction layer oblivious of physical design and layout

July 28, 2013 VLDB Summer School 2013 111

Managed Storage Layer
 Treat the decoupled storage layer as a

distributed and replicated block storage
◦ Examples: Google File System, Hadoop Distributed

File System, Windows Azure Storage, Amazon S3
 Divide design complexity between transaction

management and storage layers
 Transaction management layer: concurrency

control, recovery, storage layout
 Storage layer: replication, geo-distribution, fault-

tolerance, load balancing

July 28, 2013 VLDB Summer School 2013 112

Self-managed Storage Layer

 Provides more autonomy to the storage
layer
 Transaction layer oblivious of the physical

data layout and structures
 Transaction layer operates at the granularity

of logical objects
 Hence can span different storage formats

◦ B-trees, RDFS, Graph Stores

July 28, 2013 VLDB Summer School 2013 113

Replication

 The way a system handles data replication
adds another dimension to the design space
 Synchronous or asynchronous replication
 Primary copy, multi-master, or quorum

consensus
 Trade-offs related to consistency, availability,

partition tolerance, performance, data
durability, and disaster recovery
 Our focus: Explicit or Implicit Replication

July 28, 2013 VLDB Summer School 2013 114

Explicit Replication
 Design the transaction manager to be

cognizant of replication
 Updates made by the transactions are

explicitly replicated by the transaction
manager
 Example: Primary-based replication in Cloud

SQL Server and Megastore (inter-data
center replication)
 Benefits: Quick failover from primary to

secondary

July 28, 2013 VLDB Summer School 2013 115

Implicit Replication

 Data replication transparent to transaction
execution
◦ Typical in decoupled storage architectures
◦ Storage layer manages replication

 Examples: ElasTraS, G-Store, Megastore (for
intra-data center replication)
 Physical or logical replication

July 28, 2013 VLDB Summer School 2013 116

Summary

July 28, 2013 VLDB Summer School 2013 117

 Data or Ownership Co-location
◦ Static partitioning
 Leveraging schema patterns
 Graph-based partitioning techniques

◦ Application-specified dynamic partitioning
 Transaction Execution
 Data storage

◦ Coupled storage
◦ Decoupled storage

 Replication
◦ Explicit Replication
◦ Implicit Replication

References
 Alsberg, P. A., and Day, J. D.: A principle for resilient sharing of distributed resources. In ICSE, pp.

562-570, 1976.
 Attar, R., Bernstein, P.A, and Nathan Goodman: Site Initialization, Recovery, and Backup in a

Distributed Database System. IEEE Trans. Soft. Eng. 10(6), pp. 645-650, 1984.
 Bailis, P., Venkataraman, S., Franklin, M. J., Hellerstein, J. M., and Stoica, I.: Probabilistically Bounded

Staleness for Practical Partial Quorums. PVLDB 5(8), pp. 776-787, 2012.
 Bernstein, P. A. and Newcomer, E.: Principles of Transaction Processing, Morgan Kaufmann, 2nd ed.,

2009.
 Brewer, E. A.: Towards Robust Distributed Systems (abstract). In PODC, p. 7, 2000.
 Burckhardt, S., Leijen, D., Fähndrich, M.,Sagiv, M.: Eventually Consistent Transactions, In ESOP, pp.

67-86, 2012.
 Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H., Puz, N.,

Weaver, D., andYerneni., R.: PNUTS: Yahoo!'s hosted data serving platform. Proc. VLDB Endow.
1(2), pp. 1277-1288, 2008.

 Davidson, S. B., Garcia-Molina, H. and Skeen, D.: Consis-tency in a Partitioned Network: a Survey.
ACM Comput. Surv. 17(3), pp. 341-370, 1985.

 DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian,
S.,Vosshall, P., andVogels, W.: Dynamo: Amazon's highly available key-value store. In SOSP, pp. 205-
220, 2007.

 Ellis, C. A. and Gibbs, S. J.: Concurrency control in Groupware systems. In SIGMOD, pp. 399-407,
1989.

 Fischer, M. J. and Michael, A.: Sacrificing Serializability to Attain High Availability of Data in an
Unreliable Network. In PODS, pp. 70-75, 1982.

July 28, 2013 VLDB Summer School 2013 118

References
 Gilbert, S. and Lynch, N. A.: Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2),

pp. 51-59, 2002.

 Herlihy, M. P. and Wing, J. M.: Linearizability: a Correctness Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12(3), pp. 463-
492, 1990.

 Kemme, B. and Alonso, G.: Database Replication: a Tale of Research across Communities. PVLDB, 3(1), pp. 5-12, 2010.

 Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S.: Providing high availability using lazy replication. ACM Trans. Comput. Syst. 10 (4), 360-391,
1992.

 Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Comm. ACM, 21(7), pp. 558-565, 1978.

 Li, C., Porto, D., Clement, A., Gehrke, J., Preguic, N., and Rodrigues, R.: Making Geo-Replicated Systems Fast if Possible, Consistent when
Necessary. OSDI, pp. 265-278, 2012.

 Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G.: Don't settle for eventual: scalable causal consistency for wide-area storage
with COPS. SOSP, pp. 401-416, 2011.

 Lloyd, W., Freedman, M.J., Kaminsky, M. and Andersen, D.G.: Stronger Semantics for Low-Latency Geo-Replicated Storage. NSDI ‘13, pp. 313-
328, 2013.

 Parker Jr., D. S., Popek, G. J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E., Chow, J.M., Edwards, D., Kiser, S., Kline, C. : Detection of
Mutual Inconsistency in Distributed Systems. IEEE Trans. Software Eng 9(3), pp. 240-247, 1983.

 K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible update propagation for weakly consistent replication. In SOSP, Oct.
1997.

 Rothnie. J. B., and Goodman, N.: A Survey of Research and Development in Distributed Database Management. In VLDB, pp. 48-62, 1977.

 Saito, Y. and Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), pp. 42-81, 2005.

 Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Convergent and Commutative Replicated Data Types. Bulletin of the EATCS, No.104, pp.
67-88, 2011.

 Stonebraker, M. and Neuhold, E. J.: A Distributed Database Version of INGRES. Berkeley Workshop, pp. 19-36, 1977.

 Sovran, Y., Power, R., Aguilera, M. K., and Li, J.: Transactional Storage for Geo-replicated Systems. In SOSP, pp. 385-400, 2011.

 Terry, D. B.: Replicated Data Management for Mobile Computing. Morgan Claypool Publishers, 2008.

 Terry, D.B.: Replicated Data Consistency Explained Through Baseball, MSR-TR-2011-137, http://research.microsoft.com

 Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M.J., Theimer, M.M., Welch, B. B.: Session guarantees for Weakly Consistent Replicated
Data. In PDIS, pp. 140-149, 1994.

 Thomas, R. H.: A majority consensus approach to concurrency control for multiple copy databases. ACM Trans. on Database Systems, 4(2), pp.
180–209, 1979.

July 28, 2013 VLDB Summer School 2013 119

