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Abstract— Update of applications in SaaS is expected to be
a continuous efforts and cannot be done overnight or over the
weekend. In such migration efforts, users are trained and shifted
from a existing version to a new version successively. There is a
long period of time when both versions of applications co-exist.
Supporting two systems at the same time is not a cost efficient
option and two systems may suffer from slow response time due
to continuous synchronization between two systems. In this paper,
we focus on how to enable progressive migration of multi-version
applications in SaaS via evolving schema. Instead of maintain two
systems, our solution is to maintain an intermediate schema that
is optimized for mixed workloads for new and old applications.
With a application migration schedule, an genetic algorithm is
used to find out the more effective intermediated schema as
well as migration paths and schedule. A key advantage of our
approach is optimum performance during the long migration
period while maintaining the same level of data movement
required by the migration. We evaluated the proposed progressive
migration approach on a TPCW workload and results validated
its effectiveness of across a variety of scenarios; Experimental
results demonstrate that our incremental migration proposed
in this paper could bring about 200% performance gain as
compared to the existing system.

I. INTRODUCTION

Update of applications in SaaS is expected to be up continu-
ously: workloads for new version of application are incremen-
tally applied along with the decreasing of those for old version.
With such property, even during update process, systems can
provide online services to users for both old version and new
version of application with stable and acceptable response
time. One challenge for this scenario is data migration. Along
with the accumulation of new users, it is generally expected
that the data can be migrated into an object schema smoothly.
In order to do so, instead of shutdown-migration-restart, the
database server should support several intermediate schemas,
which are adaptive to the temporal workload distribution and
data statistic.

Traditional approach for system update needs the planned
downtime to accomplish the reconfiguration, data migration
and application transformation, which is unacceptable for

1Work done while with SAP.

multi-version applications software systems in SaaS. Espe-
cially for the systems with large volume of data, the cost of
data migration is too high to accept. It will take the system
several days to complete the system update, meanwhile, the
customer business will be blocked during such process.

Even for quick data migration, the incremental data mi-
gration is much friendly for users. The adaptive intermediate
schemas designed by the business priority and schedule pro-
vide users the choice to update their business step by step.
The risks for system update, even including the training cost,
can be decreased dramatically.

In this paper, we propose the problem of progressive migra-
tion for system updating, which is illustrated by the scenario
in Fig.1. The system update starts from the source schema,
which supports high performance and quick response for old
application users. The workload changes following the rule of
decreasing users of old application and increasing users for
new application. Accordingly, several intermediate schemas
are created and data are migrated partially to fit for the better
database performance and system response. At the end of
system update, the schema of database achieves a stable object
schema, and the old application terminates completely.

Previous industry and academic research efforts in this area
concentrated on constructing the schema mapping between
source schema and object schema automatically, and, some
of them pay attention to eliminate the cost of data migration.
Our approach for data migration is based on the definition of
basic schema evolution operators and the cost estimation for
them under different workload distribution and data statistic.
In order to minimize the total migration cost, a heuristic rule
and a genetic algorithm are proposed to construct the effective
intermediated schemas.

To the best of our knowledge, our work is the first effort
to provide an incremental data migration solution for multi-
version software systems. The key contributions including:

• Identify the challenge of incremental data migration in the
update process for large scale online software systems.

• Propose the basic operators to decompose the above
process into several atomic steps.

• Provide a cost models for progressive migration which
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Fig. 1. A scenario of schema changing in the process of progressive
migration. At the beginning of system update, all the workloads running on
the source schema belong to old version. And then, several workloads for new
version are added, which causes the database schema unsuitable to provide
the best performance. Then, the schema is updated to an intermediate schema
according to current system status (mainly including glossary workload
distribution and data statistic). This action is repeated several times until all
the users for old version withdraw from the system.

chooses the best intermediate schema according to the
status of current snapshot

The rest of the paper is organized as following: Section II
presents the problem addressed in this paper. Section III de-
scribes our new automated, dynamic data migration approach
from source schema to object schema. Section IV gives our
experimental results. Section V summarizes the related work
and compares them with our approach. And finally, Section
VI concludes this paper.

II. SCOPE OF PROBLEM

Figure 2 shows the framework of our approach. The key
components of the system consist of searching the basic
operator set and finding the best intermediate schema.

Previous researches [1] [2] provide us many approaches to
construct the schema mapping between two schemas. Based
on the generated schema mapping set, it is easy to construct
the corresponding set of migration operators. The source
schema could be migrated to object schema step by step by
progressively applying these operators once and only once.

In order to choose the proper intermediate schema for cur-
rent workload distribution and data statistic, the workload cost
on this schema in current snapshot should be estimated. Such
functionality is provided by SAP MaxDB, which provides the
cost estimation of workload based on I/O throughput. We use
these data in our experiment.

If the system is complicated, there are always numerous
mappings between the source schema and the object schema.
Furthermore, a big amount of possible operators will be gen-
erated for creating the intermediate schemas. Corresponding,
the huge number of intermediate schemas should be estimated.
The system have to make an adaptive tradeoff between choos-
ing the best intermediate schema and saving the running time
for cost estimation. Moreover, to get the higher performance
of system in global performance analysis, a more complex
process for cost estimation with predictive steps should also
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Fig. 2. A framework for progressive schema migration. (1) A schema
mapping calculation tool is used to find out all the mappings from source
schema to object schema. (2) At one migration point which is the predefined
time point to begin one step of progressive migration, the possible schema
reorganizations are virtually listed by compositing the mappings which are not
applied. After the one which has the best performance to fit for system status is
chosen, the new intermediate schema is physically created in database instance
and then following by data loading process. After that, the mappings what
have been used are erased. (3) Maintain the data to describe the system status.
Workload distribution is counted by a collector or predefined by customers,
and data statistic is refreshed by DBMS in real time.

be executed. A Genetic Algorithm (GA) based approach is
proposed in this paper to cope with this problem.

In this paper, we propose two models for selecting the
proper intermediate schema from all possible candidates.

• Local adaptive model The proper intermediate schema
is selected according to current status, that is, to make the
system performance better than other candidate schemas.

• Global adaptive model The proper intermediate schema
is selected according to current status and all possible
future intermediate schema. This is to ensure that the
strategy selected archives best performance in global way.

After selecting one proper intermediate schema in a migra-
tion point, the previous schema should be update to it and data
should also be loading into it. Usually, only a part of choosing
schema is different from previous one, it is reasonable to block
only the workloads which need access the partial schema.

Another necessary component is query rewriter, which
rewrites the mixed queries both of old version and new version
to adapt with the intermediate schema. Many previous works
were related to this problem[3] [4]. Here, we just figure out a
straightforward method which is to find out the identifications
from original query data access units, such as tables and
attributes. Then, rewrite them for intermediate schema. During
this, the schema mapping from previous schema to current
one is necessary to be maintained. This process may spend
extra system resource. But with the predictive of intermediate
schemas, the queries can be rewritten in advance of runtime
environment, and then the system performance is not affected
anymore.
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III. DESIGN APPROACH

Here we describe the basic operators, adaptive models
and cost estimation algorithms for our progressive schema
migration approach in framework above.

A. Basic Migration Operators

1) Creating Table: This operator is used to add new
columns into one existing schema. Functional dependency
which describe the relationship between new columns with
existing data should be predefined before applying this op-
erator. For example, if source schema contains a table to
describe the information of books, and the abstract of each
book should be added as a new column in object schema,
then a new column with type of string value will be added
by creating a new table. For example, if it is reasonable
to apply the functional dependency as the key bookID of
book table to abstract column, a new table should be created
with two column bookID and abstract. Figure 3 shows the
corresponding schema mapping of creating table.
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Fig. 3. Creating Table Operator. According to the functional dependency
from C2 to new information A1, a new table with columns C2 and A1 is
created.

No operator is defined for deleting table, because it is
generally hard to predicate whether some information is not
necessary before the migration process is finished. So, after
progressive migration is finished, an additional work is to
delete all the unnecessary tables.

2) Combining Table: This operator is used to combine
two tables in source schema into one table. The reference
to determine the relationship between these tables should
be predefined before applying this operator. For example, if
source schema contains table book for the information of
books, and table author for the information of book authors,
then these two tables could be combined into table glossary for
presenting all the information related to each book. And, it is
reasonable to employ the column author name in both tables
as the reference. Figure 4 shows the corresponding schema
mapping of combining table.

This operator is defined for combining just two tables into
one table. When combining n (n ≥ 2) tables, this operator
should be called for n − 1 times.

3) Spliting Table: This operator is used to split one table
in source schema into two tables. A reference to determine the
relationship between the result tables should be created before
applying this operator. For example, source schema contains
user table for the information about users, and if we want
to split the general information such as birthday and name
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Fig. 4. Combining Table Operator. According to the reference between
C2, the two tables are combined.

from it, we can just split it into two tables, one for general
information, the other for the rest information. It is reasonable
to create the foreign key by user ID between two new tables as
the new reference. Figure 5 shows the corresponding schema
mapping of splitting table.
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Fig. 5. Splitting Table operator. One table is split into two tables, and the
reference of C2 is created to maintain the dependency.

This operator is defined to split one table into just two
tables. When splitting one table into n (n ≥ 2) tables, this
operator should be called for n − 1 times.

B. Local Adaptive Model

In this section, we present the model of progressive mi-
gration to adapt local system status. The main idea of this
approach is to select the proper intermediate schema just
according to the cost estimation of current system status. It can
be regarded as the method how to find the best intermediate
schema for one snapshot among several migration points.

1) Operator Set Calculation: From the schema mapping
relationship, the minimal basic operator set can be peeled off
by applying a straightforward method as below.

• Each new column, which should be added into object
schema, corresponds to one create table operator.

• Each table in object schema, which has two mappings
from two tables in source schema, corresponds to one
combining table operator.

• Each table in source schema, which has mappings to
tables in object schema, corresponds to one splitting table
operator.

2) Schema Evaluation Based on Operator Set: According
to the schema mapping relationship, it is obviously that, by
applying each operator in operator set once, the source schema
could evolve into object schema. Here, the problem is what
operators and how many operators should be applied at one
migration point to evolve to a proper new intermediate schema.
From a certain snapshot, all the different selections deduce
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Algorithm 1 Best operator set selecting
1: FUNCTION OpSet Select
2: IN: W , workload distribution
3: IN: D, data statistic
4: IN: S, current schema
5: IN: OpSet, current operator set
6: OUT: Applied, the operators should be applied
7: BEGIN
8: Cost Min := ∞
9: Set Applied := ∅

10: Set TempOps
11: SuperSet SuperOpSet
12: SuperOpSet := PowerSet(OpSet)
13: while (SuperOpSet is not ∅) do
14: TempOps := PickOneSet(SuperOpSet)
15: TempSchema := ApplyOperators(S, TempOps)
16: TempCost := CostEstimate(TempSchema, W , D)
17: if (Min ≥ TempCost) then
18: Min := TempCost
19: Applied := TempOps
20: end if
21: Erase TempOps from SuperOpSet
22: end while
23: return Applied
24: END

several different potential intermediate schemas for this snap-
shot. According to the cost estimation of them, one effective
intermediate schema could be selected. Correspondingly, the
applied operators are erased from operator set. And then, the
system finishes the data loading and waits for next migration
point until object schema achieves.

In each migration point, LAA (Local Adaptive Algorithm),
shown in Algorithm 1 is executed to construct a subset of
operator set. Line 14 lists all possible sub operator subset for
current snapshot. From line 17 to line 19, one of them is
picked up and the cost of coresponding schema is estimated.
A method to estimate the cost of schema is given in next
subsection. Line 21 to Line 24 is used to record the operator
subset to create the best intermediate schema. Line 26 erases
the checked operator subset from superset of all operators.
After checking all the operator subset, this funtion returns one
for constructing the minimum cost intermediate schema.

By utilizing all the operators in the output set, the inter-
mediate schema with the best performance for current query
distribution and data statistic will be migrated. After schema
migration and data loading, all the operators in this subset
should be erased from original operator set, because each
operator can be used only once.

Suppose that at one migration point, there is m operators left
in operator set. Since every subset of the operator set should be
tested, we have 2m possible intermediate schemas to estimate
for one migrating snapshot. So, if we have c migration points
predefined and n operators found from schema mappings, in
the worst scenario, there are c × 2n intermediate schemas

to be estimated among the whole migration process. It is
the scenario which the source schema is always the best
intermediate one, no operators is applied in each migration
point. But every time, the cost estimation should be applied
for all possible intermediate schemas.

Even in the best scenario, there are still 2n intermediate
schemas to be estimated. It is cause by applied all operators
in the migration point, that is, from the cost estimation for
all possible intermediate schemas, the object schema which
applies all the operators is the best one. Then, after that, the
operator set is empty and schema evolution is also finished.

Obviously, the resulting combinatorial search against this
solution space is in exponential size. As LAA is based on
the exhausted search strategy, it is not proper to be used in
complex schema mapping environment. In the next subsection,
we describe our heuristic genetic search algorithm for finding
the optimum intermediate schema.

3) Cost Estimation for One Snapshot: From the imple-
mentation point of view, cost estimation is much critical to
determine the selection of schema. We provide a concept
formula to express the cost estimation for one snapshot. The
cost value for one snapshot S is shown in the following:

CostV alue = C(ObjectSchema) − C(S)

The CostV alue is the performance benefit by changing the
schema to current snapshot S. The C(ObjectSchema) is the
evaluation cost with workload on object schema, and the C(S)
is the evaluation cost on current snapshot S. With increase of
CostV alue, more benefit we can get from migration.

Both C(ObjectSchema) and C(S) can be with following
formula. The Ci is the cost of the ith query estimated by the
query engine. The Fi is the frequency of the ith query.

C(Schema) =
∑

CiFi

C. Global Adaptive Model

Last section gives the strategy to find out the best inter-
mediate schema which is matching the system status in each
migration point. But it is not the best solution for global
migration process. In this section, a global optimization model
with the forward scan is described.

1) Estimation with forward scan: Under the precondition
that the trend of workload distribution and data statistic is pre-
dicted, a global optimization method can be applied. That is, in
each migration point, calculating the performance information
on all the possible future snapshots instead of only current on.
(usually, it is reasonable, since customers always have the plan
to define the migration process and proper migration points.
For example, if the update of system is begun from financial
department to sales one and than product one, a simple tool
can be applied to count the trend of workloads by the business
frequency of each department. And, if every weekend evening,
the system can be blocked for update, it can be regarded as
the migration points).

Actually, in the first migration point, the best strategy is
selected by the idea above. The reason we still prefer to
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check the forward scan in several migration point is, that the
predictive workload trend may not very precise. If we trust it in
complex system update, such imprecision may be accumulated
and affect the whole performance migration plan.

Suppose we have c migration points and n operators. In
the worst scenario, 2c×n intermediate schemas should be
estimated in the first migration point. And, the whole process
has to check the number of

∑c
i=0 2i×n schemas. It is also

the scenario which the source schema is always the best
intermediate one, no operators is applied in each migration
point.

To search this solution space, we use GAA (Global Adaptive
Algorithm) which is based on general genetic algorithm (GA)
search heuristic [5], [6] that finds a tradeoff between finding
the high performance intermediate schema and minimizing
the estimation of intermediate schemas. The GAA’s output
is the subset of operators that should be used to create new
intermediate schema.

2) Implementation of the global adaptation with a genetic
algorithm: We note that we use a GA as a tool to find a
solution in the combinatorial problem. Since we are trying
to find an subset of basic operators, potential solutions can
be naturally formed as a string of integers, a well-studied
representation that allows us to leverage prior GA research in
effective chromosome recombination (e.g. [7]). Furthermore,
it is known that a GA provides a very good tradeoff between
exploration of the solution space and exploitation of discov-
ered maxima [6].

The method we present the chosen operators as string of
integers in each migration point is described as following.
The length of string is the number of all operators which
are not applied yet. Each position in the string responds one
operator in the operator set. Suppose we have c migration
points from current stage to the object schema, the integer
i in each position of string is limited in the range of (0, c),
which means, the corresponding operator should be applied in
migration point i.

 
 

 

1 2 1 0 3 3 Parent #1 3 3 1 2 2 1 Parent #2 

Random 
cut #1 

Random 
cut #2 

3 2 1 0 2 1 Child 

Op1 Op2 Op3 Op4 Op5 Op6 Op1 Op2 Op3 Op4 Op5 Op6

Op1 Op2 Op3 Op4 Op5 Op6 

Fig. 6. An example showing how the GA produces a child chromosome
from parent chromosomes using a two-point crossover recombination. Each
chromosome represents a permutation string. To maintain the requirement that
all the integers must be unique in the string, the recombination first takes a
contiguous subsection of the first parent (chosen to be the piece between two
randomly chosen slices), places this subsection at the start of the child, and
then picks up all remaining values in the second parent not included from the
first parent..

As mentioned, the chromosomes are permutations of unique
integers. Figure 6 shows a recombination of chromosomes

Algorithm 2 GA evaluation function
1: FUNCTION Select
2: IN: checkpoints, the number of remained check points
3: IN: W (c), array of workload distribution
4: IN: D(c), array of data statistic
5: IN: S, current schema
6: IN: OpArrange, chromosome
7: OUT: Estimation, cost of the intermediate schema
8: BEGIN
9: Schema TempSchema

10: Set TempOps
11: Cost Estimation
12: for checkpoints ≥ 0 do
13: TempOps := Choose the operators from OpArrange
14: TempSchema := ApplyOperators(S, TempOps)
15: Cost := CostEstimate(TempSchema, W (i), D(i))
16: checkpoints := checkpoints - 1
17: Estimation := Estimation + Cost
18: end for
19: return Estimation
20: END

applied to two parents will produce a new child using a two-
point crossover scheme [7]. Using this approach, a randomly
chosen contiguous subsection of the first parent is copied to the
child, and then all remaining items in the second parent (that
have not already been taken from the first parent’s subsection)
are then copied to the child in order of appearance. The uni-
chromosome mutation scheme chooses two random items from
the chromosome and reverses the elements between them,
inclusive. We will look at other recombination and mutation
schemes from the GA community in the future.

An important GA component is the evaluation function.
Given a particular chromosome representing one selection of
operators, the function deterministically calculates the cost
estimation of intermediate schema by applying these operators
with the current query distribution and data statistic. The
evaluation function follows the pseudocode in Algorithm 2.

For loop in line 13 means the migration points. One number
of the loop variable is mapping to one migration point. Line
14 is used to pickup the arrangement operators for tested
migration point. For example, if current loop variable is 3, all
operators which chromosome integer is just 3 will be picked
up. Line 15 and 16 is used to create intermediate schema and
estimate its cost. By line 18, the algorithm turns to check next
migration point. Line 19 accumulates the glossary cost.

According to the operator arrangement in chromosome,
GAA selects all the operators which should be applied in this
stage and estimates the performance of system. After finishing
the loop, the evaluation of one migration strategy is achieved.

IV. EXPERIMENTAL EVALUATION

In this paper, we use the schema in TPCW benchmark to
test our method on MaxDB. TPCW specifies a book store for
customers to browse and buy products from a website. Based
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on simplified schema in TPCW, we design source schema and
object schema as shown in Figure 7.
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Fig. 7. Schema Instance

A. Query Workload

We test two sets of queries in our experiments, namely
old queries and new queries. Each set includes ten different
queries. The old queries corresponds to source schema with
decreasing frequency, while new queries corresponds to object
schema with increasing frequency. Notice the queries can be
executed on corresponding schema directly, and both old and
new queries are executed on intermediate schemas with a
rewriting process during migration.

B. Situations for Comparison

We compare three kinds of situations with same workload:
(a) Opt-Schema: the source schema coexists with object
schema at same time, and the old queries and new queries are
executed on source schema and object schema respectively;
(b) Pro-Schema: the schema is changed after a period of
time according to both frequent workload and basic operators
of migration, both old queries and new queries are rewritten
and executed on intermediate schema during migration; (c)
Obj-Schema: both the old and new queries are rewritten and
executed on object schema.

Hence the performance of Obj-Schema gives the upper
bound of three situations. Opt-Schema is the optimal situation
for both old queries and new queries, it is the baseline of the
three situations. Pro-Schema is the situation with incrementally
schema evolution according to both workload performance
and migration operators. Measuring the performance of Obj-
Schema and Opt-Schema give us a better picture of how Pro-
Schema performs in incremental migration.

C. Experimental Parameters

In order to better test and understand the characteristics of
our method, we design a set of parameters which include: data
size, query frequency and migration frequency. The data size
refers to the size of data base, we use the data size of 100MB
and 1GB respectively.

With our method, the schema is changed in incremental
manner, which begins from source schema, reaches to object
schema after several migration points. We test three and five
migration points respectively.

During the migration process, the frequency of old queries
are decreasing and the new queries increasing. We use two
kinds of query frequency in this paper. The first one is
regular frequency, within which the old(new) queries are
decreasing(increasing) with determinate rate. The second one
is irregular frequency which means the frequency of old(new)
queries decreases(increases) at random rate.

D. Performance Measurements

We compare Pro-Schema with Opt-Schema and Obj-
Schema with LAA and GAA methods in terms of the follow-
ing two performance indicators: Phase-Cost and Overall-Cost.

The Phase-Cost is the query cost calculated on migration
point, it collects the cost of queries between two migration
points in the form of I/O number. The Overall-Cost is the
sum of Phase-Cost, and it reflects the overall performance.

For three kinds of situations, we test Phase-Cost to examine
the local optimization of LAA method. At each migration
point, we multiply the cost of each query with its frequency,
then by summing up the cost for each query. For testing the
overall optimization with GAA method, we do the experiment
with the migration points number from two to five.

E. Performance Results

In this subsection, we study the performance of different
situations by various parameters. We classify the test into two
sets of irregular frequency and regular frequency. Within each
set, we further varies the data size and migration frequency.
This enables us to test our methods from different dimensions.

1) Irregular Frequency: In this subsection, we test the
situation that the frequency of queries changes at random rate.
In Figure 9, we list the workload frequency between different
migration points. We only list the situation where there are
five migration points as an example, and omit other situations
for simplicity.

Fig. 9. Workload Frequency between Migration Points

In Figure 8(a) and Figure 8(b), we test Phase-Cost of
LAA method with five migration points, on the data size
of 100MB and 1GB respectively. We can see that the Pro-
Schema performs between the Obj-Schema and Opt-Schema,
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Fig. 8. Experiment Results

Opt-Schema provides the optimal scenario, and Pro-Schema
achieves averagely 1.5 times performance gain over Obj-
Schema. The advantages of Pro-Schema over Obj-Schema
demonstrate that our incremental migration method can ac-
quire an optimization at each migration point, this is because
the Pro-Schema evolves according to the frequent queries
at each migration point, so we get an optimized schema
for executing queries after each incremental migration, and
the optimized schema can improve the Phase-Cost between
migration points.

In Figure 8(c) and Figure 8(d), we test Phase-Cost with
LAA method with three migration points, on the data size
of 100MB and 1GB respectively. The same results can be
obtained since Obj-Schema and Opt-Schema define the bounds
for Pro-Schema. For the above figures with five migration
points, the Pro-Schema is more closer with Opt-Schema
compared with the situations with three migration points.
This is because with more migration points, the queries are
partitioned into more groups, and each group of queries are
between two migration points. Thus the changing rate of
queries is more smooth, we can make an better exploration
for workload distribution than the situation with less migration
points, thus the Pro-Schema can be more sensitive to the
workload changing, this enables the Pro-Schema progress to
Opt-Schema smoothly and closely.

2) regular Frequency: In this subsection, we compare the
Overall-Cost with LAA and GAA methods. We test the
situations with migration points from two to five, and collect
the Overall-Cost for each number of migration points. Also we
consider the scenario that frequency of new(old) queries are
increasing(decreasing) at determinate rate during the migration

process, this enables the execution of GAA method.
In Figure 8(e) and Figure 8(f), we test the Overall-Cost

with LAA and GAA methods on the data size of 100MB
and 1GB respectively. We can see the Overall-Cost of both
methods decreases with the increasing number of migration
points. This benefit comes from the more refined analysis of
workload. Also, GAA is more efficient than the LAA method.
This is because GAA explores not only historical workload
distribution, but also further workload at each migration point,
aiming at changing schema according to more queries, and this
enables the global optimization during migration process.

V. RELATED WORKS

Data integration is a pervasive challenge faced in appli-
cations that need to query across multiple autonomous and
heterogeneous data sources. Data integration is crucial in large
enterprises that own a multitude of data sources [8]. Such
projects typically involve two phases [9]. The first phase aims
at establishing the schema and data mappings required for
transforming schema and data. The second phase consists of
developing and executing the corresponding schema and data
transformations.

Several tools have been designed to assist the discovery of
appropriate schema mappings [1], P. Bernstein and S. Melnik
demonstrated a tool that circumvents the schema matching by
doing it interactively. The tool suggests candidate matches for
a selected schema element and allows convenient navigation
between the candidates [10].

Y. Velegrakis, C. Yu and L. Popa provides a framework
and a tool (ToMAS) for automatically adapting mappings as
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schemas evolve [11] [12]. The development of the correspond-
ing schema and data transformations is usually an ad-hoc
process that comprises the construction of complex programs
and queries. Recently, such work has been in the road towards
creating an industrial-strength tool [2]. The research of schema
matching is still made by usage of new techniques [13] and
domain knowledge [14].

The problem of data migration has also been extensively
studied (e.g. [15] [16]) in the context of system integration,
storage system, schema evolution and ETL tool chains. Various
industrial tools have even been developed for the Data Migra-
tion process, such as components ProfileStage, QualityStage
and DataStage in IBMs WebSphere Information Integration
Suite [17], Data Fusion, which utilizes a domain specific
language to conveniently model complex data transformations
and provides integrated development environment [9]. Since
it is always ineffective to move data from one data storage
to another, and during the process, system is usually blocked
for the service. Numerous algorithms have been proposed for
effective or even online data migration [18] [19] [20] [21] [22].
However, none of them addresses the issue of progressive data
migration.

With the help of the works above, our solution provides
more advanced techniques to solve the problem in schema
evolution and data migration. Schema matching related works
implement the relationship between multi-version systems,
effective and online data migration support system to provide
service even during data loading process.

VI. CONCLUSION AND FURTHER WORK

Data migration is an important problem in many domains,
especially in multi-version applications in SaaS. In this paper
we present progressive migration, an incremental framework
for migrating data for the scenario of system update. Based on
the definition of basic schema mapping operators and the cost
estimation for them under different workload distribution and
data statistic, a framework of incremental evolution schema is
presented. In order to provide optimized intermediate schemas
during system updating, we employ both local and global
optimized algorithms to implement the progressive migration.

To evaluate our system, we used TPCW benchmark [23]
and a reasonable new version of TPCW-liked schema as the
target schema in our experiments. Our results validate the
utilization of incremental migration for system updating can
bring a substantial performance improvement. Although we
have focused on schema updating during our experiments, our
approach can be applied to multi-version enterprise softwares
and online data migration.

In the future, we plan to work on the optimization of schema
design for more general purpose, not under the limitation on
object schema driven, but the best physical design of schema
for system workload distribution and data statistic.
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