
Data Serving Systems in
Cloud Computing Platforms

Sudipto Das
eXtreme Computing Group (XCG),

Microsoft Research (MSR)

Day 2 Morning Session

TRANSACTIONS ON
CO-LOCATED DATA: A
SURVEY OF SYSTEMS

7/28/2013 VLDB Summer School 2013 2

Outline
 Production scale-out transaction systems

◦ Cloud SQL Server (Microsoft)
◦ Megastore (Google)
◦ Espresso (LinkedIn)
 Research Prototypes

◦ ElasTraS
◦ G-Store
◦ Hyder
◦ Relational Cloud
◦ Deuteronomy

7/28/2013 VLDB Summer School 2013 3

CLOUD SQL SERVER
(MICROSOFT)

VLDB Summer School 2013 47/28/2013

Cloud SQL Server
[Bernstein et al., ICDE 2011]

 Transform SQL Server for Cloud
Computing
 Small Data Sets

◦ Use a single database
◦ Same model as on premise SQL Server
 Large Data Sets and/or Massive Throughput

◦ Partition data across many databases
◦ Application code must be partition aware

Design Philosophy

1. The application stores its data in multiple
table groups, where each group fits in a
single machine.

◦ The application is responsible for scale out.
2. A keyed table group.

◦ System responsible for scale out.

 No Two Phase Commit.

Logical Data Model

 Table group: a set of
tables

 If it is keyed, all tables
have the same
partitioning key

 Or it can be keyless

 Row group: set of rows
in a table group with the
same partitioning key
value

 A transaction on a keyed
table group can read and
write rows of only one
row group.

Id Name
34 John
57 …
92 …
… …

Table GroupTable Group

CustomersCustomers

Row
Group
Row

Group
OrdersOrders

Id Oid S
34 1

34 2

92 1

… …

Partitioning Key
Column (CustomerId)
Partitioning Key
Column (CustomerId)

7/28/2013 VLDB Summer School 2013 7

Physical Data Model

 Partition key values
are split into ranges

 Each range defines a
partition, containing row
groups with partition
keys in the range

 Partition is the unit of
distribution & replication

 A partition is never split
across storage nodes

 Hence, a transaction
is never distributed

Id Name
34 John
57 …
92 …
… …

Table GroupTable Group

CustomersCustomers

Row
Group
Row

Group OrdersOrders

PartitionPartition

Id Oid S
34 1

34 2

92 1

… …

Partitioning Key
Column (CustomerId)
Partitioning Key
Column (CustomerId)

7/28/2013 VLDB Summer School 2013 8

System Architecture

Client ApplicationClient Application

Protocol GatewayProtocol Gateway

Database Engine
(a SQL Server Instance)

Database Engine
(a SQL Server Instance)

Distributed FabricDistributed Fabric Global Partition
Manager

Global Partition
Manager

Infrastructure & Deployment ServicesInfrastructure & Deployment Services

Cloud
SQL
Server

Cloud
SQL
Server

7/28/2013 VLDB Summer School 2013 9

System Architecture
 Runs as one SQL Server

instance
 I&D Services installs &

upgrades images
 Fabric – DHT-based reliable

sys management
◦ Detects faults

 GPM – manages partition
configuration
 Protocol gateway – manages

sessions

7/28/2013 VLDB Summer School 2013 10

Upgrades Infrastructure and
Deployment
 For each server S, Infrastructure &

Deployment Services first checks with Global
Partition Manager whether disabling S would
cause a quorum loss

 If not, then it copies the image to S, disables S,
installs the upgrade, and activates S

 Most upgrades have two phases: install &
activate
◦ Install everywhere before activating anywhere
◦ Enables backing out if something goes wrong

7/28/2013 VLDB Summer School 2013 11

Primary-copy Replication
 Each partition has multiple replicas

◦ The global partition manager keeps track of this
 One is the primary, which processes queries,

updates, and DDL operations
 Secondary replicas are currently for fault tolerance
 Each storage node has a mix of primary and

secondary partitions

Ap

Bs1

Cs1

Ap

Bs1

Cs1

Bp

As1

Ds1

Bp

As1

Ds1

Cp

Bs2

Ds2

Cp

Bs2

Ds2

Dp

As2

Cs2

Dp

As2

Cs2

Ap = partition A, primary

As1 = partition A, secondary 1

Server Server Server Server

7/28/2013 VLDB Summer School 2013 12

Replication & Load Balancing
 Table-group partitions are distributed independently
 Helps balance the load after a server failure

Ep

Fp

Gp

Ep

Fp

Gp

Server Server Server

Fs1

Gs2

. . .

Fs1

Gs2

. . .
Server

If a server is overloaded, reassign a few primaries
If a partition grows too large, split it

To avoid moving data, split primary and replicas
Reassign primary-hood to a split secondary

Es1

Fs2

. . .

Es1

Fs2

. . .

Gs1

Es2

. . .

Gs1

Es2

. . .

7/28/2013 VLDB Summer School 2013 13

Replication – Normal Operation
 Primary eagerly sends update records for

transaction T to each secondary
◦ Contains key and after-image of payload

 Secondary buffers the updates for T

 If primary sends abort, secondaries discard T

 To commit T
◦ Primary assigns commit sequence number (CSN) to T
◦ Primary sends Commit to each secondary
◦ Secondary runs a local transaction to install T’s updates in

CSN order and acks to Primary
◦ After receiving acks from a quorum, primary commits T

7/28/2013 VLDB Summer School 2013 14

Replication – Details
 Logs after-images, not operations or deltas

◦ So replicas need not be identical
◦ Avoids aligning disk allocation between replicas

 Logging index updates
◦ Avoids pushing updates thru relational engine
◦ Avoids a read to perform an update

 Use replication to distribute schema updates
◦ Avoids special logic to synch data and schema updates
◦ Job service sends schema updates to all partitions.

So it only needs to track which partitions processed it, not
which replicas

7/28/2013 VLDB Summer School 2013 15

Replica Failure Handling
 If a secondary fails briefly, it gets the tail of the

update log and catches up

 If a secondary S is down too long, GPM reassigns S
to another server, which gets a copy of the primary

 If the primary is down, the GPM selects a leader to
rebuild the configuration
◦ If the leader can’t reach a quorum of replicas,

it declares “permanent quorum loss”
◦ Else, it identifies the secondary with the latest state,

which propagates updates to secondaries that need it

 In-flight transactions are resolved before the
new primary starts new transactions

7/28/2013 VLDB Summer School 2013 16

Replica Failure Handling (cont’d)

 GPM downshifts replica set to N-1.
◦ If N=3 and a replica fails, downshifting avoids a quorum

loss if a second failure occurs

 To determine latest state, each configuration of a
partition has an epoch number
◦ GPM increments epoch for each new configuration
◦ Each commit record has an [epoch, CSN] pair
◦ Latest commit is highest CSN within highest epoch

 GPM’s database is replicated like other partitions
◦ But if its primary fails, the fabric picks a new primary
◦ Uses Paxos to ensure GPM epochs are totally ordered

7/28/2013 VLDB Summer School 2013 17

Exchange Hosted Archive
 Archives messages and ensures compliance

◦ Document retention policies
◦ Document discovery for legal cases
◦ Emergency email service when corporate email is down

 Partition key: tenant, time, content hash of message

 Uses many SQL Server features
◦ non-clustered indexes
◦ selection, aggregation, full-text queries
◦ referential constraints
◦ makes extensive use of stored procedures.

 Currently, 1000+ servers storing over a petabyte

7/28/2013 VLDB Summer School 2013 18

SQL Azure – DB as a Service
 Access it like SQL Server

◦ .NET Data Provider, Entity Framework, ODBC, PHP
◦ Supports a large subset of SQL
◦ Supports Integration Services, Analysis Services, and

Reporting Services
◦ Can use Sync Framework to sync with on-premise SQL

Server or another SQL Azure DB

 First release uses keyless table groups
◦ Enables rich SQL functionality
◦ Since it’s not partitioned, DB size limit is 50 GB.

 SQL Azure partitioning (“Federation”) is coming

7/28/2013 VLDB Summer School 2013 19

Highlights

 Keyed partitions on one server.
 Simple one phase commit for replication
 Automated system management

◦ Failure detection and recovery
◦ Resource metering (for billing)

MEGASTORE (GOOGLE)

VLDB Summer School 2013 217/28/2013

Megastore

VLDB Summer School 2013 22

 A billion Internet users
◦ Small fraction is still huge

 Must please users
◦ Bad press is expensive - never lose data
◦ Support is expensive - minimize confusion
◦ No unplanned downtime
◦ No planned downtime
◦ Low latency
◦ Must also please developers, admins

7/28/2013

Making Everyone Happy

VLDB Summer School 2013 237/28/2013

Technology Options

VLDB Summer School 2013 247/28/2013

Technology Options

VLDB Summer School 2013 257/28/2013

Megastore
[Baker et al., CIDR 2011]

 Transactional Layer built on top of Bigtable
 Entity Groups form the logical mini-database

for consistent access
 Entity group: a hierarchical organization of

keys
 Cheap transactions within entity groups
 Expensive or loosely consistent transactions

across entity groups

VLDB Summer School 2013 267/28/2013

Megastore

 The largest system deployed that use Paxos
to replicate primary user data across
datacenters on every write
 Key contributions

◦ The design of a data model and storage system
for rapid development of interactive applications

◦ Optimized for low-latency operation across
geographically distributed datacenters

◦ Provides ACID semantics.

VLDB Summer School 2013 277/28/2013

Toward Availability and Scale

 For availability
◦ Synchronous, fault-tolerance log replicator

 For scale
◦ Partitioned data into a vast space of small

databases
◦ Each with its own replicated log stored in a

per-replica NoSQL datastore

VLDB Summer School 2013 287/28/2013

Entity Groups

VLDB Summer School 2013 29

 Entity groups are sub-database (static partitioning)
◦ Cheap transactions within Entity groups (common)
◦ Expensive cross-entity group transactions (rare)

7/28/2013

Replication

 Replicating data across hosts
◦ High availability by overcoming sitefailures
◦ ACID transactions are important

 Paxos algorithm
◦ Proven, optimal, fault-tolerant consensus algorithm
 No requirement for a distinguished master
 Any node can initiate reads and writes of a write-ahead log

◦ Replicated write-ahead logs

VLDB Summer School 2013 307/28/2013

Partitioning and Locality

 For scale-up of
replication
◦ Entity groups
 Data is stored in a

scalable NoSQL
datastore
 Entities within entity

group
are mutated with single-
phase
ACID transactions

◦ Operations
 Cross entity group

transactions supported
via two-phase commits

VLDB Summer School 2013 317/28/2013

Architecture

VLDB Summer School 2013 327/28/2013

Entity Groups
 Examples of entity groups in applications

◦ Email
 Each email account forms a natural entity group
 Operations within an account are transactional: user’s send

message is guaranteed to observe the change despite of fail-
over to another replica

◦ Blogs
 User’s profile is entity group
 Operations such as creating a new blog rely on

asynchronous messaging with two-phase commit
◦ Maps
 Dividing the globe into non-overlapping patches
 Each patch can be an entity group

VLDB Summer School 2013 337/28/2013

Transactions and Concurrency
Control
 Each Megastore entity group functions as a

mini-database with ACID semantics.
 A transaction writes its mutation into the

entity group’s write-ahead log, then the
mutation is applied to data
 Recall, Bigtable can store multiple values in

the same row/column pair with different
timestamps.
 MVCC: multi-version concurrency control
 When mutations are applied, values are

written at the timestamps of their
transactions.

VLDB Summer School 2013 347/28/2013

Concurrency Control

 Read consistency
◦ Current: last committed value of a single entity,

after all previous written values are applied.
◦ Snapshot: reads single entity from the last fully

applied transaction
◦ Inconsistent reads: ignore the state of log and

read the last values directly

VLDB Summer School 2013 357/28/2013

Concurrency Control

Write consistency
◦ Always begins with a current read to determine

the next available log
◦ Commit operation
 gathers mutations into a write-ahead log entry
 assigns it a timestamp higher than any previous one
 Appends to log using Paxos

◦ Paxos uses optimistic concurrency : though
multiple writers maybe attempting concurrently,
only one wins.

VLDB Summer School 2013 367/28/2013

Complete transaction lifecycle in
Megastore
1. Read

◦ Obtain the timestamp and log position of the last
committed transaction

2. Application logic
◦ Read from Bigtable and gather writes into a log entry

3. Commit
◦ Use Paxos to achieve consensus for appending that entry

to the log
4. Apply

◦ Write mutations to the entities and indexes in Bigtable
5. Clean up

◦ Delete data that is no longer required

VLDB Summer School 2013 377/28/2013

Cross Entity group transactions
Weak consistency. Using queues to provide

asynchronous transactional messaging
between entity groups, eg, if each calendar is
an entity group, a single transaction can
atomically send invitation queue messages to
many distinct calendars. Not necessarily
serializable.
 Strong Consistency, using two-phase commit:

for atomic updates across entity groups.
Discouraged.

VLDB Summer School 2013 387/28/2013

Replication
 Single, consistent view of the data stored in its

underlying replicas
 Characteristics

◦ Reads and writes can be initiated from any replicas
◦ ACID semantics are preserved regardless of what

replica a client starts from
◦ Replication is done per entity group
 By synchronously replicating the group’s transaction log to a

quorum of replicas

◦ Writes require one round of inter-data center
communication

◦ Reads observe last-acknowledged write and
 After a write is observed, all future reads observe that write

VLDB Summer School 2013 397/28/2013

Replication Options

 Master-based approach:
◦ Limited flexibility for read and write operation
◦ Master failover complicated

 Original Paxos:
◦ Writes require 2 round trips (prepare and

accept)
◦ Reads require 1 round trip.

 Optimize Paxos: Megastore approach.

VLDB Summer School 2013 407/28/2013

Megastore’s Practical Paxos

 Fast Reads:
◦ Current reads are executed locally on any

replica.
◦ Coordinator:A server in each data center,

tracks the set of entity groups for which its
replica has observed all writes. For these entity
groups, replica serves local reads

◦ Writes keep coordinator state consistent: If a
write fails, the key is evicted from the
coordinator state.

VLDB Summer School 2013 417/28/2013

Megastore’s Practical Paxos

 Fast Writes:
◦ Single round trip writes using a notion of leaders.
◦ Run Paxos for each log position.
◦ The leader for each log position is a distinguished

replica. Leader arbitrates which writer wins.
First writer to the leader wins, and writes its
value at all replicas, others use 2 phase Paxos.

◦ Use closest replica as the leader for write, since
most applications submit writes from the same
region repeatedly.

VLDB Summer School 2013 427/28/2013

Highlights of Megastore

 Scale
◦ Uses Bigtable within a datacenter
◦ Easy to add Entity Groups (storage, throughput)

 ACID Transactions
◦ Write-ahead log per Entity Group
◦ 2PC or Queues between Entity Groups

Wide-Area Replication
◦ Paxos
◦ Tweaks for optimal latency

VLDB Summer School 2013 437/28/2013

ESPRESSO: INDEXED
TIMELINE-CONSISTENT
DISTRIBUTED DATA
STORE

7/28/2013 VLDB Summer School 2013 44

Key Design points
 Hierarchical data model

◦ InMail, Forums, Groups,
Companies

◦ Transaction support on
related entities

 Produce native Change
Data Capture stream
◦ Timeline consistency
◦ Read after write

 Rich functionality within a
hierarchy
◦ Local secondary indexes
◦ Real-time updates to

secondary indexes
◦ Full-text search
◦ On-the-fly schema

evolution
 Elasticity
 Modular and pluggable

◦ Off-the-shelf: MySQL, Lucene,
Avro

7/28/2013 VLDB Summer School 2013 45

Architecture (10,000 ft)

 Major
contributions
◦ A novel generic

distributed cluster
management
framework (helix)

◦ A partition-aware
change data capture
pipeline

◦ A high performance
inverted index
implementation

7/28/2013 VLDB Summer School 2013 46

Architecture (1,000 ft)

7/28/2013 VLDB Summer School 2013 47

Application View: Nested Entities

7/28/2013 VLDB Summer School 2013 48

Partitioning

• ACID updates to data items within an entity
• Timeline-consistent CDC stream for updating

independent entities

Hash or range partitioning of the ID space

7/28/2013 VLDB Summer School 2013 49

Espresso API (REST-ful)

 Read
◦ Document lookup via keys or secondary indexes
◦ Lookup by key, lookup by key prefix, lookup by a projection of fields

 Write
◦ Insertion or full/parital update of a single document via a complete key
◦ Auto increment of a key prefix
◦ Transactional update of a document group

 Conditionals
◦ Supported on both reads and writes
◦ Used to implement equivalents of compare-and-swap

 Multi Operations
◦ All reads and writes have their multi-counterparts for multi-operation

transactions
 Change stream listener

◦ API through DataBus

7/28/2013 VLDB Summer School 2013 50

Storage Nodes

 Data stored and served by the individual storage
nodes
◦ Local transactional support for updates within a partition
◦ Update base table and local indexes within a single transaction

 Replicas maintained by the change stream (using
DataBus)
 Secondary indexes on the document groups

(partitions)
◦ Global secondary indexes implemented as derived tables (similar

to that in PNUTS)

7/28/2013 VLDB Summer School 2013 51

Replication and Consistency
 Primary-copy replication

◦ Enhancements to MySQL’s binary logging
◦ Change events distributed using DataBus
◦ Semi-synchronous (commit only after replication

succeeds on at least one relay) or asynchronous
replication

 Ordering of operations of primary similar to
Lamport timestamps (system change number)
appended to the node ID

 On master failure, slave promoted to master
◦ Drain the change events from DataBus before serving

requests
◦ Might loose tail-of-log

 All replication within a single DC
◦ Cross data center asynchronous replication for DR
◦ DataBus to the rescue

7/28/2013 VLDB Summer School 2013 52

Espresso Usage
 Company Pages

◦ Over 2.6 million company pages
◦ A company profile page may list one or more products
◦ Products may have many recommendations
◦ Hierarchy implemented as three tables with products listed under

companies and recommendations listed under products
◦ Read-heavy workload with 1000:1 ratio of reads to writes

 InMail
◦ Message table: stores the raw messages
◦ Mailbox table: summary view of the mailbox
◦ Updates to a message table atomically updates the mailbox table
◦ Write-heavy with 3:1 read to write ratio

 Unified Social Content Platform (USCP)
◦ Shared platform that aggregates social activity across LinkedIn
◦ Annotate a service’s data with social gestures, such Likes, comments, and

shares
 E.g.: LinkedIn Today, Network Update Stream, LinkedIn Mobile

7/28/2013 VLDB Summer School 2013 53

ELASTRAS
TRANSACTION
MANAGEMENT (UCSB)

7/28/2013 VLDB Summer School 2013 54

Elastic Transaction Management
[Das et al., ElasTraS, HotCloud 2009,TODS 2013]

On-demand Scalability Elasticity
 Database viewed as a collection of

partitions
 Suitable for:

◦ Large single tenant database
 Database partitioned at the schema level

◦ Multitenant databases
 Large number of small databases
 Each partition is a self contained database

VLDB Summer School 2013 557/28/2013

Elastic Scalability
 Decouple ownership from storage

◦ Working sets fit in cache
 Negligible performance impact

◦ Simplifies transaction management
 No need to handle replication in TM layer

◦ Low cost migration
 lightweight elasticity

 Limit interactions to a single node
◦ Efficient (non-distributed) transaction execution
◦ Loose synchronization between nodes
 linear scalability

VLDB Summer School 2013 567/28/2013

Design Rational

 Separate System and Application state
◦ System State
 Partition to server Mapping
 Lease information

◦ Application State
 Data served by OTMs

 Limited distributed synchronization
◦ Loose coupling between OTMs, TM Master, and

Metadata Manager

VLDB Summer School 2013 577/28/2013

ElasTraS

 Elastic to deal with workload changes

 Dynamic Load balancing of partitions

 Autonomic recovery from node failures

 Transactional access to database partitions

VLDB Summer School 2013 587/28/2013

Overview of ElasTraS Architecture

VLDB Summer School 2013 59

OTM
OTM

Distributed Fault-tolerant Storage

OTM

TM Master
Metadata
Manager

P1 P2 Pn

Txn ManagerTxn Manager
DB

Partitions

Master and MM ProxiesMaster and MM Proxies

Log Manager
Durable Writes

Health and Load
Management

Lease
Management

7/28/2013

Effective Resource Sharing

 Multiple database partitions hosted within
the same database process
◦ Shared process multitenancy
◦ Allows better consolidation
◦ Use conventional RDBMS engines

 Independent transaction and data managers
◦ Good performance isolation

VLDB Summer School 2013 607/28/2013

Transaction Management Layer
 Concurrency Control

◦ OTMs execute transactions on partitions
◦ Optimistic Concurrency Control

 Recovery
◦ Transaction’s updates logged before commit
◦ REDO-only recovery after a failure

 Storage and Cache Management
◦ Append only storage layout
◦ Separate Read and Write Caches
◦ Similar to Bigtable storage layout

VLDB Summer School 2013 617/28/2013

Management and Control Layer

 System metadata is critical
◦ Consensus based replication for strong

consistency and high availability (based on Paxos)
◦ Zookeeper in our implementation

 TM Master monitors the system
◦ Detect failures
◦ Coordinate recovery
◦ Loose synchronization between nodes using

leases

VLDB Summer School 2013 627/28/2013

Elasticity and Load Balancing

 TM Master monitors performance
◦ Periodically obtain load and resource usage

information
 Model the system’s performance
 Determine

◦ Which partition to migrate
◦ Where to migrate
◦ When to migrate

 Live Database Migration for elastic load
balancing

VLDB Summer School 2013 637/28/2013

Schema Level Partitioning

 Partition based on schema, not individual
tables
 Cluster frequently accessed data items in a

partition
 Leverage Access patterns in the workloads

◦ Tree schema

VLDB Summer School 2013 647/28/2013

Tree Schema

VLDB Summer School 2013 657/28/2013

DYNAMIC
PARTITIONING:
G-STORE (UCSB)

VLDB Summer School 2013 667/28/2013

Dynamically formed partitions

 Access patterns evolve, often rapidly
◦ Online multi-player gaming applications
◦ Collaboration based applications
◦ Scientific computing applications

 Not amenable to static partitioning
◦ Transactions access multiple partitions
◦ Large numbers of distributed transactions

 How to efficiently execute transactions while
avoiding distributed transactions?
◦ G-Store [Das et al., SoCC 2010] presents a solution

67VLDB Summer School 20137/28/2013

Online Multi-player Games

68

Player Profile

ID Name $$$ Score

VLDB Summer School 20137/28/2013

Online Multi-player Games

69

Execute transactions
on player profiles while
the game is in progress

VLDB Summer School 20137/28/2013

Online Multi-player Games

70VLDB Summer School 2013

Partitions/groups
are dynamic

7/28/2013

Online Multi-player Games

71VLDB Summer School 2013

Hundreds of thousands
of concurrent groups

7/28/2013

G-Store
[Das et al., SoCC 2010]

 Transactional access to a group of data
items formed on-demand
◦ Dynamically formed database partitions

 Challenge: Avoid distributed transactions!
 Key Group Abstraction

◦ Groups are small
◦ Groups have non-trivial lifetime
◦ Groups are dynamic and on-demand

72VLDB Summer School 20137/28/2013

Transactions on Groups
Without distributed transactions

73

Ownership
of keys at a
single node

Key
Group

 One key selected as the
leader

 Followers transfer
ownership of keys to leader

VLDB Summer School 2013

Grouping Protocol

7/28/2013

Why is group formation hard?
 Guarantee the contract between

leaders and followers in the presence of:
 Leader and follower failures
 Lost, duplicated, or re-ordered messages
 Dynamics of the underlying system

 How to ensure efficient and ACID
execution of transactions?

VLDB Summer School 2013 747/28/2013

Grouping protocol

 Handshake between leader and follower(s)
◦ Conceptually akin to “locking”

VLDB Summer School 2013 75

Follower(s)

Leader
L(Creating) L(Joined)

L(Joining) L(Joined)

L(Deleting)

L(Free)

L(Deleted)

Group Opns
J JA JAA D DA

Log entries

Time

Create
Request

Delete
Request

7/28/2013

Efficient transaction processing

 How does the leader execute transactions?
◦ Caches data for group members underlying data

store equivalent to a disk
◦ Transaction logging for durability
◦ Cache asynchronously flushed to propagate updates
◦ Guaranteed update propagation

76VLDB Summer School 2013

LogTransaction Manager

Cache Manager
Leader

Followers

Asynchronous update
Propagation

7/28/2013

Prototype: G-Store
An implementation over Key-value stores

77

Grouping
Layer

Key-Value Store Logic

Distributed Storage

Application Clients

Transactional Multi-Key Access

G-Store

Transaction
Manager

Grouping
Layer

Key-Value Store Logic

Transaction
Manager

Grouping
Layer

Key-Value Store Logic

Transaction
Manager

Grouping middleware layer resident on top of a key-value store

VLDB Summer School 20137/28/2013

HYDER – A
TRANSACTIONAL
RECORD MANAGER FOR
SHARED FLASH

7/28/2013 VLDB Summer School 2013 78

Hyder: The Big Picture

Goal: Enable scale-out without partitioning DB or app

79

• Store the whole DB in flash
– which is accessible to all servers
– via a fast data center network

• Main architectural features
– Uses a log-structured DB in flash
– Broadcast log to all servers
– Roll forward log on all servers
– Optimistic concurrency control

Network

Internet

Hyder LogHyder Log

Server

HyderHyder
App

Server

HyderHyder
App

Server

HyderHyder
App

• There’s no cross-talk between servers
– Hence, Hyder scales-out without partitioning

7/28/2013 VLDB Summer School 2013

What is Hyder?

80

A software stack for transactional record
management

 Stores [key, value] pairs, which are accessed within
transactions

Functionality
 Record operations:

◦ Insert, Delete, Update, Get where field = X; Get next
 Transactions: Start, Commit, Abort

Why build another one?
 Exploit flash memory and high-speed networks

to simplify scaling out large-scale web services

7/28/2013 VLDB Summer School 2013

Network

Scaling Out with Partitioning

81

Internet

Database
Partition

App

$

Log

Data

Web Server

App $

$

• Database is partitioned across
multiple servers

• Each query is sent to the
appropriate partition(s)

• For scalability, avoid distributed
transactions

• Cross partition consistency is
enforced in the application

• Hard to provision servers and
distribute load evenly

$ $ $ $

Web Server

App $

Web Server

App $

Database
Partition

App

$

Log

Data

Database
Partition

App

$

Log

Data

Database
Partition

App

$

Log

Data

7/28/2013 VLDB Summer School 2013

Network

Hyder Scales Out Without Partitioning

82

Internet
• In Hyder, the log is the database

• All servers can access the log

• No partitioning is required

• Database is multi-versioned, so
server caches are trivially
coherent

• Hence, can parallelize a query with
consistency across servers

• And servers can fetch pages from
the log or from neighboring
servers’ caches

Hyder LogHyder Log

Web
Server

HyderHyder
$

App

Web
Server

HyderHyder
$

App

Web
Server

HyderHyder
$

App

7/28/2013 VLDB Summer School 2013

Hyder Runs in the Application Process

83

• No distributed programming

• No distributed caches for the
app to keep consistent

• Avoids the expense of RPC’s to
a database server

• Simple high performance
programming modelNetwork

Internet

Hyder LogHyder Log

Web
Server

HyderHyder
$

App

Web
Server

HyderHyder
$

App

Web
Server

HyderHyder
$

App

7/28/2013 VLDB Summer School 2013

Enabling Hardware Assumptions

 Flash offers cheap and abundant I/O operations
 Can spread the DB across a log, with less physical

contiguity

 Cheap high-performance data center networks
 Many servers can share storage, with high performance

 Large, cheap, 64-bit addressable memories
 Reduces the rate that Hyder needs to access the log

 Many-core web servers
 Hyder can afford to roll forward the log on all servers

847/28/2013 VLDB Summer School 2013

The Hyder Stack

 Segments, stripes and streams

85

• Optimistic transaction protocol

• ISAM, SQL, LINQ, etc.

• Append-only custom controller interface

• Multi-versioned search tree

Network

Scalable Reliable
Storage Layer

Indexed Record
Layer

Transaction
Layer

API

7/28/2013 VLDB Summer School 2013

Database is a Search Tree

86

G

B

A

H

C I

D

A D C B I H G

Binary
Search
Tree

Tree is marshaled into the log

7/28/2013 VLDB Summer School 2013

D

Update
D’s value

Binary Tree is Multi-versioned

87

G

B

A

H

C I

D

 Copy on write
 To update a node, replace nodes up to the root

C

G

B

7/28/2013 VLDB Summer School 2013

Log Updates are Broadcast

88

Broadcast
intention

Broadcast
ack

7/28/2013 VLDB Summer School 2013

Transaction Commit
 Each server rolls forward transactions in log

sequence
 When it processes an intention log record,

◦ it checks whether the transaction experienced a conflict
◦ if not, the transaction committed and the server merges

the intention into its last committed state
 All servers make the same commit/abort decisions

89

A D C B I H G

T’s conflict
zone

Did a committed transaction
write into T’s readset or writeset
here? transaction T

D C B G
Snapshot

7/28/2013 VLDB Summer School 2013

RELATIONAL CLOUD
(MIT)

VLDB Summer School 2013 907/28/2013

Relational Cloud
[Curino et al., CIDR 2011]

 Scale-out shared nothing database cluster
Workload driven partitioning technique

[Curino et al. VLDB 2010]
Workload driven partition placement

technique [Curino et al. SIGMOD 2011]

VLDB Summer School 2013 917/28/2013

System Design

VLDB Summer School 2013 927/28/2013

System Design

 Partition each database into one or more
nodes, when the load on a database exceeds
the capacity of a single machine.
 Place the database partitions on the back-

end machines . Load the Database ,migrate
and replicate the data for availability.
 Secure the data and process the queries.

VLDB Summer School 2013 937/28/2013

Data Partitioning

 Two purposes:
◦ to scale a single database to multiple nodes
◦ to enable more granular placement.

 Relational Cloud uses a workload-aware
partitioning strategy
◦ Schism [discussed earlier]

VLDB Summer School 2013 947/28/2013

Workload driven Placement

 Resource allocation is a major challenge.
 Problems include:

◦ monitoring the resource requirements of each
workload, predicting the load multiple workloads
will generate when run together on a server.

 Solution
◦ Kairos (monitoring and consolidation engine)

VLDB Summer School 2013 957/28/2013

Workload Placement

VLDB Summer School 2013 96

 Each workload initially run on a dedicated
server
 Consolidate DB machines onto single server.
Problem Definition:
 Allocate workloads to servers in a way that:

◦ minimizes number of servers used
◦ balances load across servers
◦ maintains performance unchanged

7/28/2013

Workload Placement

VLDB Summer School 2013 977/28/2013

Workload Placement

VLDB Summer School 2013 98

Non-Linear Integer
Constraints:

Problem:To determine which
workloads to combine together

Goal: Minimize number of
machines; maximize load
balance; no resource over
commitment

Input: list of machines with disk,
memory, CPU, and workload
profiles specifying resource
utilization as (historical) time
series.

7/28/2013

Summary of Relational Cloud

 Goals: Scalability, elasticity and privacy.
 Scalability: workload driven partitioning

◦ Graph partitioning to minimize distributed
transactions

 Elasticity: workload aware monitoring and
consolidation
◦ Optimization problem to minimize servers and

maximize load balance.
 Privacy: Critical, but out of scope of this

tutorial.

VLDB Summer School 2013 997/28/2013

DEUTERONOMY
(MICROSOFT)

VLDB Summer School 2013 1007/28/2013

Unbundling Transactions in the Cloud
[Lomet et al., CIDR 2009, Levandoski et al., CIDR 2011]

 Transaction component: TC
◦ Transactional CC & Recovery
◦ At logical level (records, key

ranges, …)
 No knowledge of pages, buffers,

physical structure
 Data component: DC

◦ Access methods & cache
management

◦ Provides atomic logical operations
 Traditionally page based with

latches
 No knowledge of how they are

grouped in user transactions

Concur-
rency
Control

Recovery

Cache
Manager

Access
Methods

Query Processing

TC

DC

VLDB Summer School 2013 1017/28/2013

Why might this be interesting?
 Multi-Core Architectures

◦ Run TC and DC on separate cores
 Extensible DBMS

◦ Providing of new access method – changes only in DC
◦ Architectural advantage whether this is user or system

builder extension
 Cloud Data Store with Transactions

◦ TC coordinates transactions across distributed collection
of DCs without 2PC

◦ Can add TC to data store that already supports atomic
operations on data

 Major Challenge in Cloud:
◦ Reduce number of round trips between TC and

DC

VLDB Summer School 2013 1027/28/2013

Extensible Cloud Scenario

DC1:
tables&indexes
storage&cache

DC4:
tables&indexes
storage&cache

DC5:
RDF & text

DC6:
3D-shape

index

Application 1 Application 2

Cloud Services
TC1:

transactional
recovery&CC

calls

TC3:
transactional
recovery&CC

calls deploys

VLDB Summer School 2013 1037/28/2013

Basic Architecture

Transaction Component (TC)
1. Guarantee ACID Properties
2. No knowledge of physical

data storage

Logical locking and logging

1. Physical data storage
2. Atomic record modifications
3. Data could be anywhere (cloud/local)

Storage

Data Component (DC)

Record
Operations

Control
Operations

Client
Request Interaction Contract

1. Reliable messaging
“At least once execution”

2. Idempotence
“At most once execution”

3. Causality
“If DC remembers message, TC must also”

4. Contract termination
“Mechanism to release contract”

1047/28/2013 VLDB Summer School 2013

Record Manager – An Insert Operation
Example

105

 Receive request and dispatch
a session thread

 Call to lock manager
◦ Lock resource
◦ Generate Log Sequence

Number (LSN)

 Sends LSN & operation to
DC

 Call to log manager
◦ Log operation with LSN

TC Record
Manager

Lock
Manager

Log
Manager

DC

Client &
Session

Manager

Client &
Session

Manager

“insert
record”1

Lock

LSN

2
“insert
record”, LSN

3

Log
Record

LSN
4

1

2

3

4

7/28/2013 VLDB Summer School 2013

Architectural Principles

 View DB kernel pieces as distributed system

 This exposes full set of TC/DC
requirements

 Interaction contract (SLA) between DC &
TC

VLDB Summer School 2013 1067/28/2013

And the List Continues

 Cloudy [ETH Zurich]
 epiC [NUS]
 Deterministic Execution [Yale]
…

VLDB Summer School 2013 1077/28/2013

TRANSACTIONS ON
DISTRIBUTED DATA: A
SURVEY OF SYSTEMS

7/28/2013 VLDB Summer School 2013 108

INCREMENTALLY
INDEXING THE WEB
WITH PERCOLATOR

7/28/2013 VLDB Summer School 2013 109

Problem: Index the web

times.com mit.edu

g.cn

fark.com

nyt.com

URL In Links Body PageRank

times.com mit.edu ... 1

mit.edu times.com ... 1

fark.com times.com ... 3

g.cn fark.com,
times.com

.... 7

indexing

Output:
Documents ready for serving

Input:
Raw documents

Duplicate Elimination with MapReduce

Map Reduce

Indexing system is a chain of many MapReduces

Parse
Document

Cluster By
Checksum Invert Links

Index Refresh with MapReduce

Should we index the new document?
oNew doc could be a dup of any previously crawled
oRequires that we map over entire repository

Map

repository

refresh

Indexing System Goals

What do we want from an ideal indexing system?

•Large repository of documents
oUpper bound on index size
oHigher-quality index: e.g. more links

•Small delay between crawl and index: "freshness"

MapReduce indexing system: Days from crawl to index

Incremental Indexing

•Maintain a random-access repository in Bigtable
•Indices let us avoid a global scan
•Incrementally mutate state as URLs are crawled

URL Contents Pagerank Checksum Language

http://usenix.org/osdi10 <html>CFP, 6 0xabcdef01 ENGLISH

http://nyt.com/ <html>Lede ... 9 0xbeefcafe ENGLISH

Incremental Indexing on Bigtable

Checksum Canonical

URL Checksum PageRank IsCanonical?
nyt.com 0xabcdef01 6 yes

0xabcdef01 nyt.com

nytimes.com 0xabcdef01 9

nytimes.com

no

What happens if we process both URLs
simultaneously?

yes

Percolator: Incremental Infrastructure

Adds distributed transactions to Bigtable

(0) Transaction t;
(1) string contents = t.Get(row, "raw", "doc");
(2) Hash h = Hash32(contents);

...
// Potential conflict with concurrent execution

(3) t.Set(h, "canonical", "dup_table", row);
...

(4) t.Commit(); // TODO: add retry logic

Simple API: Get(), Set(), Commit(), Iterate

Implementing Distributed Transactions

•Provides snapshot isolation semantics
•Multi-version protocol (mapped to Bigtable timestamps)
•Two phase commit, coordinated by client
•Locks stored in special Bigtable columns:

"balance"

balance:data balance:commit balance:lock

Alice

5:
4:
3: $10

5:
4: data @ 3
3:

5:
4:
3:

Transaction Commit

balance:data balance:commit

Alice
3: $10

4: data @ 3
3:

Bob
3: $10

4: data @ 3
3:

balance:data balance:commit balance:lock

Alice
5: $15
4:
3: $10

4: data @ 3
3:

6:
5: lock
4:
3:

Bob 4:
3: $10

4: data @ 3
3:

6:
5:
4:
3:

balance:data balance:commit balance:lock

Alice
5: $15
4:
3: $10

4: data @ 3
3:

6:
5: lock
4:
3:

Bob
5: $5
4:
3: $10

4: data @ 3
3:

6:
5: lock
4:
3:

balance:data balance:commit balance:lock

Alice
5: $15
4:
3: $10

6: data @ 5
5:
4: data @ 3
3:

5:
4:
3:

Bob
5: $5
4:
3: $10

4: data @ 3
3:

5: lock
4:
3:

balance:data balance:commit balance:lock

Alice
5: $15
4:
3: $10

6: data @ 5
5:
4: data @ 3
3:

5:
4:
3:

Ben
5: $5
4:
3: $10

6: data @ 5
5:
4: data @ 3
3:

5:
4:
3:

Transaction t;
int a_bal = t.Get("Alice", "balance");
int b_bal = t.Get("Bob", "balance");
t.Set("Alice", "balance", a_bal + 5);
t.Set("Bob", "balance", b_bal - 5);
t.Commit();

Notifications: tracking work

Users register "observers" on a column:
•Executed when any row in that column is written
•Each observer runs in a new transaction
•Run at most once per write: "message collapsing"

Applications are structured as a series of Observers:

DocumentProcessor

DocumentProcessor

DocumentProcessorRawDocumentLoaderRawDocumentLoader DocumentProcessor

DocumentExporter

LinkInverter

Implementing Notifications
Dirty column: set if observers must be run in that row

Randomized distributed scan:
•Finds pending work, runs observers in thread pool
•Scan is efficient: only scans over bits themselves

No shards or work units: nothing to straggle
Dirty? balance:data ...

Alice Yes

5: $15

Bob No

5: $5

Running Percolator

Each machine
runs:

•Worker binary
linked with
observer code.

•Bigtable tablet
server

•GFS chunkserver

Observer Code

Percolator::RunWorker()

Tablet
Server

Tablet
Server

Tablet
Server

...

x N

GFS GFS GFS

SPANNER

7/28/2013 VLDB Summer School 2013 122

What is Spanner?

• Distributed multiversion database
 General-purpose transactions (ACID)
 SQL query language
 Schematized tables
 Semi-relational data model

 Running in production
 Storage for Google’s ad data
 Replaced a sharded MySQL database

7/28/2013 123VLDB Summer School 2013

Example: Social Network

7/28/2013

User posts
Friend lists
User posts
Friend lists
User posts
Friend lists
User posts
Friend lists

US

Russia
Spain

San Francisco
Seattle
Arizona

Sao Paulo
Santiago
Buenos Aires

Moscow
Berlin
Krakow

London
Paris
Berlin
Madrid
Lisbon

User posts
Friend lists

124

x1000

x1000

x1000

x1000

VLDB Summer School 2013

Brazil

Overview

 Feature: Lock-free distributed read
transactions
 Property: External consistency of distributed

transactions
◦ First system at global scale

 Implementation: Integration of concurrency
control, replication, and 2PC
◦ Correctness and performance

 Enabling technology: TrueTime
◦ Interval-based global time

7/28/2013 125VLDB Summer School 2013

Read Transactions
 Generate a page of friends’ recent posts

◦ Consistent view of friend list and their posts

7/28/2013

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive…”

126VLDB Summer School 2013

User posts
Friend lists
User posts
Friend lists

Single Machine

Friend2 post

Generate my page

Friend1 post

Friend1000 post
Friend999 post

Block writes

7/28/2013

…

127VLDB Summer School 2013

User posts
Friend lists
User posts
Friend lists

Multiple Machines

User posts
Friend lists

Generate my page

Friend2 post

Friend1 post

Friend1000 post
Friend999 post

User posts
Friend lists

Block writes

7/28/2013

…

128VLDB Summer School 2013

User posts
Friend lists

User posts
Friend lists

User posts
Friend lists

Multiple Datacenters

User posts
Friend lists

Generate my page

Friend2 post

Friend1 post

Friend1000 post

Friend999 post

7/28/2013

…

US

Spain

Russia

Brazil

129

x1000

x1000

x1000

x1000

VLDB Summer School 2013

Version Management

 Transactions that write use strict 2PL
◦ Each transaction T is assigned a timestamp s
◦ Data written by T is timestamped with s

7/28/2013 130

Time 8<8

[X]

[me]

15

[P]
My friends

My posts
X’s friends

[]

[]

VLDB Summer School 2013

Synchronizing Snapshots

==
External Consistency:

Commit order respects global wall-time order

7/28/2013 131

==
Timestamp order respects global wall-time order

given
timestamp order == commit order

Global wall-clock time

VLDB Summer School 2013

Timestamps, Global Clock

 Strict two-phase locking for write
transactions
 Assign timestamp while locks are held

T

Pick s = now()

Acquired locks Release locks

7/28/2013 132VLDB Summer School 2013

Timestamp Invariants

7/28/2013 133

• Timestamp order == commit order

• Timestamp order respects global wall-time
order

T2

T3

T4

T1

VLDB Summer School 2013

TrueTime

 “Global wall-clock time” with bounded
uncertainty

time

earliest latest

TT.now()

2*ε

7/28/2013 134VLDB Summer School 2013

Timestamps and TrueTime

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

7/28/2013

average ε

Commit wait

average ε

135VLDB Summer School 2013

Commit Wait and Replication

7/28/2013

T

Acquired locks Release locks

Start consensus Notify slaves

Commit wait donePick s

136

Achieve consensus

VLDB Summer School 2013

Commit Wait and 2-Phase Commit

7/28/2013

TC

Acquired locks Release locks

TP1

Acquired locks Release locks

TP2

Acquired locks Release locks

Notify participants of s

Commit wait doneCompute s for each

137

Start logging Done logging

Prepared

Compute overall s

Committed

Send s

VLDB Summer School 2013

Example

7/28/2013 138

TP

Remove X
from my friend
list

Remove myself
from X’s friend list

sC=6

sP=8

s=8 s=15

Risky post P

s=8

Time <8

[X]

[me]

15

TC T2

[P]
My friends

My posts
X’s friends

8

[]

[]

VLDB Summer School 2013

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

7/28/2013 139

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

VLDB Summer School 2013

TrueTime implementation

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset
ε = reference ε + worst-case local-clock drift

reference
uncertainty

7/28/2013 140

200 μs/sec

VLDB Summer School 2013

What If a Clock Goes Rogue?

 Timestamp assignment would violate
external consistency
 Empirically unlikely based on 1 year of data

◦ Bad CPUs 6 times more likely than bad clocks

7/28/2013 141VLDB Summer School 2013

Discussion

 Transactional guarantees on distributed data
◦ Distributed synchronization is inevitable

We discussed a few production systems that
explore different points of the space
 The exact system of choice is often

dependent on the application’s requirements

7/28/2013 VLDB Summer School 2013 142

