Data Serving Systems in
Cloud Computing Platforms

Sudipto Das

eXtreme Computing Group (XCGQG),
Microsoft Research (MSR)

Day 2 Morning Session

TRANSACTIONS ON
CO-LOCATED DATA:A
SURVEY OF SYSTEMS

Outline

* Production scale-out transaction systems
> Cloud SQL Server (Microsoft)
> Megastore (Google)
o Espresso (LinkedIn)

* Research Prototypes
o ElasTraS
> G-Store
> Hyder
> Relational Cloud
> Deuteronomy

CLOUD SQL SERVER
(MICROSOFT)

Cloud SQL Server

[Bernstein et al., ICDE 201 1]

e Transform SQL Server for Cloud
Computing
e Small Data Sets
> Use a single database
> Same model as on premise SQL Server
 Large Data Sets and/or Massive Throughput

o Partition data across many databases
o Application code must be partition aware

Design Philosophy

I. The application stores its data in multiple
table groups, where each group fits in a
single machine.

> The application is responsible for scale out.

2. A keyed table group.

> System responsible for scale out.

e No Two Phase Commit.

Logical Data Model

Row
Group

» Table group: a set of
tables

» If it is keyed, all tables
have the same
partitioning key

» Or it can be keyless

» Row group: set of rows
in a table group with the
same partitioning key
value

» A transaction on a keyed
table group can read and
write rows of only one
row group.

Table Group
Customers Orders
|d | Name d |Oid |S
34 | John 34 |1 v
S7 | ... 34 x
92 | ... 92 x

Partitioning Key

Column (Customerld)

L,] | I

|

Physical Data Model

Row
Group

» Partition key values
are split into ranges

» Each range defines a

partition, contalnlng

f;rou ps Wlt partition
keys in the range

row

» Partition is the unjt of
distribution & replication

» A partition is never sp

across storage nodes

lit

4 Hence, a transaction

is never distributed

Partition

Table Group
Customers Orders
(]1d | Name d |Oid |S
< 34 | John 34 |1 v
57 34 x
L 92 92 x
< L
< Partitioning Key
[| Column (Customerld)

|

System Architecture

[Client Application }

Protocol Gateway

Cloud

Database Engine
(a SQL Server Instance)

SQL
Server

Distributed Fabric

Global Partition
Manager

Infrastructure & Deployment Services

System Architecture

Runs as one SQL Server

|nStanCe | Client Application

|&D Services installs & : |

upgrades images i B by |
. . Fve Egne l Server i

Fabric — DHT-based reliable | (asatseverinsiance) | =

sys management Disiruted Fabric | | G100l Parttion

© DEtECtS faU|tS i Infrastructure & Deployment Services

GPM — manages partition
configuration

Protocol gateway — manages
sessions

Upgrades Infrastructure and
Deployment

e For each server §, Infrastructure &
Deployment Services first checks with Global
Partition Manager whether disabling S would
cause a quorum loss

e If not, then it copies the image to S, disables S,
installs the upgrade, and activates S

* Most upgrades have two phases: install &
activate

o Install everywhere before activating anywhere
> Enables backing out if something goes wrong

Primary-copy Replication

e Each partition has multiple replicas
> The global partition manager keeps track of this

* One is the primary, which processes queries,
updates, and DDL operations

» Secondary replicas are currently for fault tolerance

e Each storage node has a mix of primary and
secondary partitions

AP BP CP DP A A
= partition A, primary
le Asl BsZ As2 i
A, = partition A, secondary |
CsI DsI DsZ CsZ

Server Server Server Server

Replication & Load Balancing

» Table-group partitions are distributed independently
* Helps balance the load after a server failure

i E F,
i FsZ Gs2

sl sl

m

s2

* If a server is overloaded, reassign a few primaries
* If a partition grows too large, split it

= To avoid moving data, split primary and replicas

= Reassign primary-hood to a split secondary

Replication — Normal Operation

* Primary eagerly sends update records for
transaction T to each secondary

o Contains key and after-image of payload
e Secondary buffers the updates for T

o If primary sends abort, secondaries discard T

e To commitT
> Primary assigns commit sequence number (CSN) to T
> Primary sends Commit to each secondary

Secondary runs a local transaction to install T’s updates in
CSN order and acks to Primary

After receiving acks from a quorum, primary commits T

(@)

(@)

Replication — Details

* Logs after-images, not operations or deltas
> So replicas need not be identical
> Avoids aligning disk allocation between replicas
* Logging index updates

> Avoids pushing updates thru relational engine
> Avoids a read to perform an update

* Use replication to distribute schema updates

> Avoids special logic to synch data and schema updates

° Job service sends schema updates to all partitions.

So it only needs to track which partitions processed it, not
which replicas

Replica Failure Handling

¢ If a secondary fails briefly, it gets the tail of the
update log and catches up

e If a secondary S is down too long, GPM reassigns S
to another server, which gets a copy of the primary

¢ If the primary is down, the GPM selects a leader to
rebuild the configuration

o If the leader can’t reach a quorum of replicas,
it declares “permanent quorum loss”

o Else, it identifies the secondary with the latest state,
which propagates updates to secondaries that need it

¢ In-flight transactions are resolved before the
new primary starts new transactions

Replica Failure Handling (cont'd)

* GPM downshifts replica set to N-1.

° If N=3 and a replica fails, downshifting avoids a quorum
loss if a second failure occurs

* To determine latest state, each configuration of a
partition has an epoch number

> GPM increments epoch for each new configuration
o Each commit record has an [epoch, CSN] pair

o Latest commit is highest CSN within highest epoch

 GPM’s database is replicated like other partitions
o But if its primary fails, the fabric picks a new primary

o Uses Paxos to ensure GPM epochs are totally ordered

Exchange Hosted Archive

e Archives messages and ensures compliance
o Document retention policies
o Document discovery for legal cases
o Emergency email service when corporate email is down

 Partition key: tenant, time, content hash of message

e Uses many SQL Server features
> non-clustered indexes
o selection, aggregation, full-text queries
o referential constraints
> makes extensive use of stored procedures.

e Currently, |000+ servers storing over a petabyte

SQL Azure — DB as a Service

o Access it like SQL Server
.NET Data Provider, Entity Framework, ODBC, PHP
Supports a large subset of SQL

o

o

o

Supports Integration Services, Analysis Services, and
Reporting Services

o

Can use Sync Framework to sync with on-premise SQL
Server or another SQL Azure DB

 First release uses keyless table groups
> Enables rich SQL functionality
o Since it’s not partitioned, DB size limit is 50 GB.

e SQL Azure partitioning (“Federation”) is coming

Highlights

» Keyed partitions on one server.
* Simple one phase commit for replication

e Automated system management
o Failure detection and recovery
> Resource metering (for billing)

MEGASTORE (GOOGLE)

Megastore

e A billion Internet users

o Small fraction is still huge

e Must please users

> Bad press is expensive - never lose data

o Support is expensive - minimize confusion
> No unplanned downtime

> No planned downtime

> Low latency

> Must also please developers, admins

Making Everyone Happy

Automatic
management

Easy
deployment

Happy
Developers

Happy Scalable

Admins

pulic.y read-modify-write

ACID
Transactions

Wide-Area
Replication

HA,
low latency

good
experience

Happy
Users

7/28/2013 VLDB Summer School 2013 23

Technology Options

Scalable

Eventual
Consistency

Bigtable Clustering

?

Wide-Area
Replication

Transactions

Vating

Technology Options

Scalable

Eventual Bigtable Clustering

Me@@t@re

Wide-Area
Replication Cnnsmtent

Quorum
Voting

Megastore
[Baker et al., CIDR 201]

e Transactional Layer built on top of Bigtable

e Entity Groups form the logical mini-database
for consistent access

e Entity group: a hierarchical organization of
keys
» Cheap transactions within entity groups

» Expensive or loosely consistent transactions
across entity groups

Megastore

* The largest system deployed that use Paxos
to replicate primary user data across
datacenters on every write

e Key contributions
> The design of a data model and storage system

for rapid development of interactive applications

o Optimized for low-latency operation across
geographically distributed datacenters

> Provides ACID semantics.

Toward Availability and Scale

e For availability

> Synchronous, fault-tolerance log replicator

e For scale

o Partitioned data into a vast space of small
databases

o Each with its own replicated log stored in a
per-replica NoSQL datastore

Entity Groups

 Entity groups are sub-database (static partitioning)
o Cheap transactions within Entity groups (common)

o Expensive cross-entity group transactions (rare)

Replication

e Replicating data across hosts
> High availability by overcoming sitefailures
o ACID transactions are important

e Paxos algorithm

> Proven, optimal, fault-tolerant consensus algorithm
No requirement for a distinguished master

Any node can initiate reads and writes of a write-ahead log

o Replicated write-ahead logs

Partitioning and Locality

e For scale-up of
replication

Entity groups
Data is stored in a

scalable NoSQL
datastore

Entities within entity
group

are mutated with single-
phase

ACID transactions

Operations

Cross entity group
transactions supported
via two-phase commits

Distacantsrs
= [

B R —
fee 1 [— e, =
1ETHT R ACID
- i - L samartcs
'.'_| Jl,—ﬁ _aj } within an entity group

]

I

I

g U G sl O e i
FH‘M'G*allnﬂ/f- HEETHERE

! :

i

-

i

Il

vl

partitian the

catastons \

|
|
|
o ’
d |4 | Leoser monsistenoy
o I = e ACroas entity grousa

Each eafity grup // _..-"’J . ! Entity group dsta snd
iz synchroaously ___d.,-"'f o o S ~___ Tepication metadsta
repicated across T storad in scalable
datacenerns T MoSOL catastores
Entities (units of data)
L
Mnst transactions ,")
arz within & si!'rgln:-* = e rQ E” Iy Croup 1
erlly grous a{_ﬂ.,ﬁ_
Index
CJ-

Glooal Indexes
spar ertity
grouns but have
WoERGr
conal shency

Croes anbly group
ransactans supparcd via =, [BoTive
1

Twea-Ph i
wa-Phage Commit sersd o \/’)//’
i -~
-
Asvinch commiunicatinn Leal

.-"-FF' ke
bebween enlity groups, - Index = Enily Group 2
P!

supporled by Quoups |

Architecture

Datacenters

within an entity group

=i - } ACID semantics

RS M —
Entity Groups / = ~
partition the —* — —
datastore S ~—

_ Looser consistency

~—— — e across entity groups

IS synchronously ‘ _
replicated across <«—— Bigtables in each

datacenters - Datacenter

-
Each entity group / _,_,...-a"f/ . |
/f'-”

Entity Groups

* Examples of entity groups in applications

o Email
Each email account forms a natural entity group

Operations within an account are transactional: user’s send
message is guaranteed to observe the change despite of fail-
over to another replica

o Blogs
User’s profile is entity group

Operations such as creating a new blog rely on
asynchronous messaging with two-phase commit

o Maps
Dividing the globe into non-overlapping patches
Each patch can be an entity group

Transactions and Concurrency
Control

e Each Megastore entity group functions as a
mini-database with ACID semantics.

e A transaction writes its mutation into the
entity group’s write-ahead log, then the
mutation is applied to data

o Recall, Bigtable can store multiple values in
the same row/column pair with different
timestamps.

e MVCC: multi-version concurrency control

* When mutations are applied, values are
written at the timestamps of their
transactions.

Concurrency Control

e Read consistency

o Current: last committed value of a single entity,
after all previous written values are applied.

o Snapshot: reads single entity from the last fully
applied transaction

o Inconsistent reads: ignore the state of log and
read the last values directly

Concurrency Control

e Write consistency

> Always begins with a current read to determine
the next available log

o Commit operation
gathers mutations into a write-ahead log entry
assigns it a timestamp higher than any previous one

Appends to log using Paxos
o Paxos uses optimistic concurrency : though

multiple writers maybe attempting concurrently,
only one wins.

Complete transaction lifecycle in

Megastore

I. Read

o Obtain the timestamp and log position of the last
committed transaction

2. Application logic
o Read from Bigtable and gather writes into a log entry
3. Commit
o Use Paxos to achieve consensus for appending that entry

to the log
4. Apply
> Write mutations to the entities and indexes in Bigtable
5. Clean up

o Delete data that is no longer required

Cross Entity group transactions

* Weak consistency. Using queues to provide
asynchronous transactional messaging
between entity groups, eg, if each calendar is
an entity group, a single transaction can
atomically send invitation queue messages to
many distinct calendars. Not necessarily
serializable.

e Strong Consistency, using two-phase commit:
for atomic updates across entity groups.
Discouraged.

Replication

* Single, consistent view of the data stored in its
underlying replicas

e Characteristics
> Reads and writes can be initiated from any replicas

o ACID semantics are preserved regardless of what
replica a client starts from

> Replication is done per entity group

By synchronously replicating the group’s transaction log to a
quorum of replicas

> Writes require one round of inter-data center
communication

> Reads observe last-acknowledged write and
After a write is observed, all future reads observe that write

Replication Options

e Master-based approach:
o Limited flexibility for read and write operation
> Master failover complicated

e Original Paxos:

> Writes require 2 round trips (prepare and
accept)

o Reads require | round trip.

e Optimize Paxos: Megastore approach.

Megastore’s Practical Paxos

Fast Reads:

> Current reads are executed locally on any
replica.

o Coordinator:A server in each data center,
tracks the set of entity groups for which its
replica has observed all writes. For these entity
groups, replica serves local reads

> Writes keep coordinator state consistent: If a
write fails, the key is evicted from the
coordinator state.

Megastore’s Practical Paxos

e Fast Writes:
o Single round trip writes using a notion of leaders.
o Run Paxos for each log position.

> The leader for each log position is a distinguished
replica. Leader arbitrates which writer wins.
First writer to the leader wins, and writes its
value at all replicas, others use 2 phase Paxos.

> Use closest replica as the leader for write, since
most applications submit writes from the same
region repeatedly.

Highlights of Megastore

* Scale
o Uses Bigtable within a datacenter

o Easy to add Entity Groups (storage, throughput)

e ACID Transactions

> Write-ahead log per Entity Group

o 2PC or Queues between Entity Groups
e Wide-Area Replication

o Paxos

o Tweaks for optimal latency

ESPRESSO: INDEXED
TIMELINE-CONSISTENT
DISTRIBUTED DATA
STORE

Key Design points

e Hierarchical data model S T T
o InMail, Forums, Groups, a =]
Companies — Sutect A
° Transaction support on I_ - u o ot s
related entities =
* Produce native Change = S i
Data Capture stream
o Timeline consistency Secng Ser
> Read after write oy Mukthenee (Resporded
e Rich functionality within a |] Nl = P i
hierarchy e DR
> Local secondary indexes
> Real-time updates to m Dersicpng Somears
secondary indexes Rl > Nechii
> Full-text search ﬂ M Singn (Resied)
o On-the-fly schema . '
evolution "‘ Srare Dacige ot WiaiaAgp, I

o Elasticity
e Modular and pluggable - u i

o Off-the-shelf: MySQL, Lucene,
Avro

Architecture (10,000 ft)

e Major

contributions

” > A novel generic

* ---- Semse s - distributed cluster

o
= - e management

Storage MNode Storage Node Storsge Node

=N A — AR e framework (helix)
L”“‘ﬁ oo | [L2™ 08 | e |
= — ° A partition-aware
\ \ J change data capture

k Drafabus RAelay P| Pel | ne

g v
Downestream Dhvwensdream .
Consumer Consumesr _)

Dala Flow Heplication Slow Cluster Control Flow
-’ I — I e E

o A high performance
inverted index
implementation

[eywnstzam
Consumsr

Architecture (1,000 ft)

7/28/2013 VLDB Summer School 2013 47

Application View: Nested Entities

Mailbox Database

Message Metadata Table

Msgld Value Blob
Invitation to join Linkedin
Job opportunity
Request for referral
Invitation to join Linkedin

Job opportunity

555555

N—lum-l

Mailbox Aggregates Table

Memberld Value Biob
bob
lom

unread:20, total:100
unread: 2, total: 25

Message Details Table

*Dear Bob,...."
"Heilo there,....
"Good moming, *
"Hi Tom,...*
“Interesting opportunity”

ESEE%;

Partitioning

Hash or range partitioning of the ID space

Mailbox Database - Partition 1

Mescage Meladoks Table

g

‘e Bt

Brrflaticn 10 jodn Linkpdin

E%ig

1
¥
2

Jinb ooty

Pegusst ior relers

M thow Apgrogales Taole

Mailbox Databasa - Parliton 2

Masgsgs Metacsks Tabls

Ve Blob

Baoh unragd M, e 100

EEEi

Wil Apgpegales Tabe

Mamberd Ve Bich

lam wreaad B, iolal 25

Wembeckd Maghd W Bl
o 1 Wwilatinn 4 jon Linkadin
Tm 2 ot ppponurity
Mezsaga Golnik Tokss
Mamberid | Magl Wi Bt
an 1 "Hi Tan...®
o 2 “IndeEnatng copoetuniy™

e ACID updates to data items within an entity

e Timeline-consistent CDC stream for updating

independent entities

Espresso APl (REST-ful)

e Read
o Document lookup via keys or secondary indexes
> Lookup by key, lookup by key prefix, lookup by a projection of fields
* Write
o Insertion or full/parital update of a single document via a complete key
o Auto increment of a key prefix
o Transactional update of a document group
» Conditionals
o Supported on both reads and writes
> Used to implement equivalents of compare-and-swap
e Multi Operations

> All reads and writes have their multi-counterparts for multi-operation
transactions

e Change stream listener
> API through DataBus

Storage Nodes

* Data stored and served by the individual storage
nodes

o Local transactional support for updates within a partition

o Update base table and local indexes within a single transaction

e Replicas maintained by the change stream (using
DataBus)

* Secondary indexes on the document groups
(partitions)

> Global secondary indexes implemented as derived tables (similar
to that in PNUTY)

Replication and Consistency

e Primary-copy replication
> Enhancements to MySQL'’s binary logging
> Change events distributed using DataBus

> Semi-synchronous (commit only after replication
succeeds on at least one relay) or asynchronous
replication

e Ordering of operations of primary similar to
Lamport timestamps (system change number)
appended to the node ID

e On master failure, slave promoted to master

> Drain the change events from DataBus before serving
requests

> Might loose tail-of-log

 All replication within a single DC
> Cross data center asynchronous replication for DR
o DataBus to the rescue

Espresso Usage

* Company Pages
o Over 2.6 million company pages
o A company profile page may list one or more products
> Products may have many recommendations

o Hierarchy implemented as three tables with products listed under
companies and recommendations listed under products

o Read-heavy workload with 1000:1 ratio of reads to writes
e InMalil
o Message table: stores the raw messages
> Mailbox table: summary view of the mailbox
o Updates to a message table atomically updates the mailbox table
> Write-heavy with 3:1 read to write ratio

» Unified Social Content Platform (USCP)

o Shared platform that aggregates social activity across LinkedIn

> Annotate a service’s data with social gestures, such Likes, comments, and
shares

E.g.: LinkedIn Today, Network Update Stream, LinkedIn Mobile

ELASTRAS
TRANSACTION
MANAGEMENT (UCSB)

Elastic Transaction Management
[Das et al., ElasTraS, HotCloud 2009, TODS 2013]

e On-demand Scalability =» Elasticity

e Database viewed as a collection of
partitions

* Suitable for:
o Large single tenant database
Database partitioned at the schema level

o Multitenant databases
Large number of small databases

Each partition is a self contained database

Elastic Scalability

e Decouple ownership from storage
o Working sets fit in cache
Negligible performance impact

o Simplifies transaction management
No need to handle replication in TM layer

o Low cost migration
lightweight elasticity
e Limit interactions to a single node
o Efficient (non-distributed) transaction execution

o Loose synchronization between nodes
linear scalability

Design Rational

e Separate System and Application state
o System State

Partition to server Mapping

Lease information
o Application State
Data served by OTMs
e Limited distributed synchronization

> Loose coupling between OTMs, TM Master; and
Metadata Manager

Elas TraS

» Elastic to deal with workload changes
* Dynamic Load balancing of partitions
* Autonomic recovery from node failures

» Transactional access to database partitions

Overview of ElasTraS Architecture

a
M Master - Lease > Manager
. e
p Management —
Health and Load
Management , Master and MM Proxies

Txn Manager

DB
Partitions

Log Manager

Effective Resource Sharing

e Multiple database partitions hosted within
the same database process

o Shared process multitenancy
> Allows better consolidation
> Use conventional RDBMS engines
* Independent transaction and data managers

> Good performance isolation

Transaction Management Layer

e Concurrency Control
o OTMs execute transactions on partitions
o Optimistic Concurrency Control
e Recovery
o Transaction’s updates logged before commit
o REDO-only recovery after a failure
e Storage and Cache Management
o Append only storage layout
o Separate Read and Write Caches
o Similar to Bigtable storage layout

Management and Control Layer

e Systemh metadata is critical

o Consensus based replication for strong
consistency and high availability (based on Paxos)

o Zookeeper in our implementation

e TM Master monitors the system
> Detect failures
> Coordinate recovery

> Loose synchronization between nodes using
leases

Elasticity and Load Balancing

e TM Master monitors performance

o Periodically obtain load and resource usage
information

* Model the system’s performance

e Determine
o Which partition to migrate
o Where to migrate
o When to migrate

e Live Database Migration for elastic load
balancing

Schema Level Partitioning

e Partition based on schema, not individual
tables

» Cluster frequently accessed data items in a
partition
* Leverage Access patterns in the workloads

o Tree schema

Tree Schema

[Primary]
Table (k)

Secondary Table

(kp.r k51)

Secondary Table

(kp!ksz)

Global Table
(kgl}

l

Secondary Table

(kp! k521 k53)

Warehouse

— —

Stock

District

Cem]

<

Customer

/\

Order

/\

History

Order-Line

New-Order

DYNAMIC
PARTITIONING:
G-STORE (UCSB)

Dynamically formed partitions

» Access patterns evolve, often rapidly
o Online multi-player gaming applications
o Collaboration based applications
o Scientific computing applications
* Not amenable to static partitioning
o Transactions access multiple partitions
o Large numbers of distributed transactions
* How to efficiently execute transactions while
avoiding distributed transactions!?
o -Store [Das et al., SoCC 2010] presents a solution

Online Multi-player Games

<.> B 0 Name [s53 [Score
-

Player Profile

7/28/2013 VLDB Summer School 2013 68

Online Multi-player Games

Execute transactions
on player profiles while
the game is in progress

7/28/2013 VLDB Summer School 2013 69

Online Multi-player Games

Partitions/groups
are dynamic

7/28/2013 VLDB Summer School 2013 70

Online Multi-player Games
B

o B Hundreds of thousands
ﬁr 4 | of concurrent groups

7/28/2013 VLDB Summer School 2013 71

G-Store
[Das et al., SoCC 2010]

e Transactional access to a group of data
items formed on-demand

o Dynamically formed database partitions
» Challenge: Avoid distributed transactions!
e Key Group Abstraction

> Groups are small

> Groups have non-trivial lifetime

> Groups are dynamic and on-demand

7/28/2013 VLDB Summer School 2013 72

Transactions on Groups
Without distributed transactions

Grouping Protocol

ﬁz%

Key
Group

Ownership
of keys at a
single node

o One key selected as the
leader

o Followers transfer
ownership of keys to leader

7/28/2013 VLDB Summer School 2013 73

Why is group formation hard?

* Guarantee the contract between
leaders and followers in the presence of:

Leader and follower failures
Lost, duplicated, or re-ordered messages

Dynamics of the underlying system

e How to ensure efficient and ACID
execution of transactions!?

Grouping protocol

Log entries
A —
L(Joining) L(Joined) L(Free)

Follower(s)

Create
R t
=ques GrouplOpns
Leader '
L(Creating) L(Joined)
Time —> Delete
Request

* Handshake between leader and follower(s)

o Conceptually akin to “locking”

Efficient transaction processing

e How does the leader execute transactions?

Caches data for group members =» underlying data
store equivalent to a disk

(0]

o

Transaction logging for durability
Cache asynchronously flushed to propagate updates
Guaranteed update propagation

o

o

Transaction Manager

Leader Log

Cache Manager

Asynchronous update
Propagation
olowers 55 65 63 - 65

Prototype: G-Store

An implementation over Key-value stores

Application Clients

= % £

Transactional Multi-Key Access

Grouping middleware layer resident on top of a key-value store

Grouping | Transaction Grouping | Transaction Grouping | Transaction
Layer Manager Layer Manager Layer Manager
Key-Value Store Logic Key-Value Store Logic | Key-Value Store Logic
L s A o
— Distributed Storage @~ —

G-Store

HYDER-A
TRANSACTIONAL
RECORD MANAGER FOR
SHARED FLASH

Hyder:The Big Picture

Goal: Enable scale-out without partitioning DB or app

W e Store the whole DB in flash

’ 4 i Ry — which is accessible to all servers
SEIEr ae — via a fast data center network

Main architectural features
— Uses a log-structured DB in flash

— Broadcast log to all servers
Hyder Log > — Roll forward log on all servers
— Optimistic concurrency control

Network

e There’s no cross-talk between servers

— Hence, Hyder scales-out without partitioning

What is Hyder?

A software stack for transactional record
management

» Stores [key, value] pairs, which are accessed within
transactions

Functionality
e Record operations:
> Insert, Delete, Update, Get where field = X; Get next

e Transactions: Start, Commit, Abort

Why build another one?

» Exploit flash memory and high-speed networks

to simplify scaling out large-scale web services

Scaling Out with Partitioning

Database is partitioned across
multiple servers

Web Server

Each query is sent to the

appropriate partition(s)

For scalability, avoid distributed
transactions

Database Database
Partition iti Partition

Cross partition consistency is
enforced in the application

Hard to provision servers and
distribute load evenly

7/28/2013 VLDB Summer School 2013 8|

Hyder Scales Out Without Partitioning

In Hyder, the log is the database

All servers can access the log

No partitioning is required

Database is multi-versioned, so
server caches are trivially
coherent

* Hence, can parallelize a query with

| consistency aCross servers
Hyder Log \

And servers can fetch pages from
the log or from neighboring
servers’ caches

82

Hyder Runs in the Application Process

1ﬁterneﬁ
s No distributed programming

* No distributed caches for the
app to keep consistent

e Avoids the expense of RPC’s to
a database server

e Simple high performance

programming model
Hyder Log \

7/28/2013 VLDB Summer School 2013 83

Enabling Hardware Assumptions

* Flash offers cheap and abundant I/O operations

—> Can spread the DB across a log, with less physical
contiguity

e Cheap high-performance data center networks
—> Many servers can share storage, with high performance

* Large, cheap, 64-bit addressable memories
—> Reduces the rate that Hyder needs to access the log

* Many-core web servers
—> Hyder can afford to roll forward the log on all servers

The Hyder Stack

4)
API
_)
(AV N/ N
Transaction
Layen

W | | S
Indexed Record
Layer
S A0 G
Scalable Reliable
Storage Layer

i E@

e ISAM,SQL,LINQ, etc.

 Optimistic transaction protocol

e Multi-versioned search tree

* Segments, stripes and streams

 Append-only custom controller interface

Database is a Search Tree

Binary

_ Search

Tree

Tree is marshaled into the log

QO-CRQ OO0 |

Binary Tree is Multi-versioned

e Copy on write

e To update a node, replace nodes up to the root

— T
(&) ©
ogRoNnNNgjc
OO 0 @
(@ > ()
Update

D’s value

Log Updates are Broadcast

1 Ty
ead

. snapshc:t ‘

Transaction
Intention

Broadcast

Broadcast
intention

&=

RN

Scalable Rellable Dlstrlbuted Log <

FI.:sh | FI.:sh | FI.:rm | FI:rm | Flaed'l | Flned'l | Flned'l | |tﬂ1 | |a:d1 | Iaed'l I Iaﬂh
Fiasn | |[Fmsn | | Fimsn | || Fimsn | |[Fiasn | |[Fia=n ?—h:m nile T-]am ¥ | T-]a:rh ¥ | ?-1am | Zlam | Zlam | Elam “Flash
“Fash | [Fash | ([Flesh | [Flesh | || Flash ||| Flash | [Flash | [[Flash | |[Flasn | |[Flasn |][Flesn | |[Fiassh | |[Flash | || Fiash

Transaction Commit

* Each server rolls forward transactions in log
sequence

* When it processes an intention log record,
o it checks whether the transaction experienced a conflict

o if not, the transaction committed and the server merges
the intention into its last committed state

e All servers make the same commit/abort decisions

Did a committed transaction T’s conflict
write into T’s readset or writeset zone)
here? transaction T

(A @B W)L e N

Snapshot

RELATIONAL CLOUD
(MIT)

Relational Cloud

[Curino et al., CIDR 201 |]

* Scale-out shared nothing database cluster

* Workload driven partitioning technique
[Curino et al.VLDB 2010]

» Workload driven partition placement
technique [Curino et al. SIGMOD 201 1]

System Design

Users

=

Client Nodes

Trusted Platform (Private/Secured)

Untrusted Platform (Public)

-

* Admin Nodes *

Partitioning Engine

Placement and
Migration Engine

Partitions Database

User App

JDBC-Client (CryptDB-enabled)

Privacy-presernving .
Queries

Privacy-preservings me e s =

Resulfs

Frontend Nodes

Router

Distributed Transaction Coordination

-
Backend Nodes

CryptDB
Encryption Layer

Placement load stats
FL

oy

[Backend Nodes)
CryptDB
Encryption Layer

=

& »

System Design

e Partition each database into one or more
nodes, when the load on a database exceeds
the capacity of a single machine.

* Place the database partitions on the back-
end machines . Load the Database ,migrate
and replicate the data for availability.

 Secure the data and process the queries.

Data Partitioning

e Two purposes:
o to scale a single database to multiple nodes
> to enable more granular placement.
 Relational Cloud uses a workload-aware
partitioning strategy

o Schism [discussed earlier]

Workload driven Placement

* Resource allocation is a major challenge.
* Problems include:

> monitoring the resource requirements of each
workload, predicting the load multiple workloads
will generate when run together on a server.

e Solution

o Kairos (monitoring and consolidation engine)

Workload Placement

* Each workload initially run on a dedicated
server

» Consolidate DB machines onto single server.
Problem Definition:
e Allocate workloads to servers in a way that:

o minimizes number of servers used
o balances load across servers
o maintains performance unchanged

Workload Placement

| measure resourcel estimate find optimal
utilization combined load assignment

numerical models ﬁﬂh-llh%_i*
programming
miniiz T gy)
srbect ko .".E‘“'i =R;

f]
Y rmane(3 " CPU v aiy) o2 MaaDPLl;

i rnas(S ATEA + sy § € Mo TAL;

Wi il aded [DTSRy 3y | 5 ManDISH, |

m . — ~disk i/o
7 sl - ram

acaiitons plecsment conab et

cpu SN
V}G | }' ' - disk i/o
U ot 2
A A A
~
DBMSs tend to use all resource non-linear constraints
available resources non-linearities and objective function

A

Workload Placement

Non-Linear Integer
Constraints:

Problem: To determine which
workloads to combine together

Goal: Minimize number of
machines; maximize load
balance; no resource over
commitment

Input: list of machines with disk,
memory, CPU, and workload
profiles specifying resource
utilization as (historical) time
series.

workloads

SCIrvyers

S2

S3

S4

— O | O|—=|—|CO

O (OO O |0|0 |Oo

o —|o—|C|—|©O

—_— O | — O |0 |0 |—

Summary of Relational Cloud

» Goals: Scalability, elasticity and privacy.

e Scalability: workload driven partitioning
> Graph partitioning to minimize distributed
transactions
e Elasticity: workload aware monitoring and
consolidation

> Optimization problem to minimize servers and
maximize load balance.

e Privacy: Ciritical, but out of scope of this
tutorial.

DEUTERONOMY
(MICROSOFT)

Unbundling Transactions in the Cloud
[Lomet et al., CIDR 2009, Levandoski et al., CIDR 201 1]

e Transaction component: TC
> Transactional CC & Recovery
> At logical level (records, key

ranges, ...)
No knowledge of pages, buffers, | Concur- Recovery
physical structure rency
e Data component: DC Control ¢
> Access methods & cache
management
> Provides atomic logical operations DC
;I'racrj]itionally page based with Access Cache
atches
No knowledge of how they are Methods Manager

grouped in user transactions

Why might this be interesting?

e Multi-Core Architectures
o RunTC and DC on separate cores
e Extensible DBMS
> Providing of new access method — changes only in DC

> Architectural advantage whether this is user or system
builder extension

e Cloud Data Store with Transactions

o TC coordinates transactions across distributed collection
of DCs without 2PC

o Can add TC to data store that already supports atomic
operations on data

e Major Challenge in Cloud:

> Reduce number of round trips between TC and
DC

Extensible Cloud Scenario

Application |

Application 2

calls deploys |

Cloud Services

DC4:
tables&indexes
storage&cache

DC5:

DCé:
RDF & text

3D-shape
index

~DCI:
tables&indexes
storage&cache

7/28/2013

VLDB Summer School 2013

103

Basic Architecture

Client l

(Req_uecf
Transaction Component (TC)

I. Guarantee ACID Properties
2. No knowledge of physical
data storage

> Logical locking and logging

Record Control
Operations Operations
Data Component (DC)

I. Physical data storage
2. Atomic record modifications
3. Data could be anywhere (cloud/local)

Storage

S

Interaction Contract

Reliable messaging
“At least once execution”

Idempotence
“At most once execution”

Causality

“If DC remembers message, TC must also”

Contract termination
“Mechanism to release contract”

\

O

Record Manager — An Insert Operation
Example

Client &
Session

(D) Receive request and dispatch
a session thread

“insert @) Call to lock manager

O record”

TC Record C o Generate Log Sequence
Manager Number (LSN)

o Lock resource

“insert

record”, LSN O Sends LSN & operation to

@ Call to log manager
> Log operation with LSN

Architectural Principles

e View DB kernel pieces as distributed system

e This exposes full set of TC/DC
requirements

e Interaction contract (SLA) between DC &
TC

And the List Continues

e Cloudy [ETH Zurich]
* epiC [NUS]
e Deterministic Execution [Yale]

VLDB Summer School 2013

TRANSACTIONS ON
DISTRIBUTED DATA:A
SURVEY OF SYSTEMS

INCREMENTALLY
INDEXING THE WEB
WITH PERCOLATOR

Problem: Index the web

Input: Output:
Raw documents Documents ready for serving
URL In Links Body |PageRank
mit.edu
indexing times.com [mit.edu 1
4 mit.edu times.com 1
fark.com
fark.com [times.com 3
S g.cn fark.com, 7
times.com

Duplicate Elimination with MapReduce

J ' Ma J Reduce :
[N |E>'. j>'
J B

Indexing system is a chain of many MapReduces

Parse Cluster By
Document Checksum

Index Refresh with MapReduce

repository

A

)

ﬂ'

' I 4

)

b J

refresh

1

Map

Should we index the new document!?
0New doc could be a dup of any previously crawled
0 Requires that we map over entire repository

Indexing System Goals
What do we want from an ideal indexing system?

®Large repository of documents
o Upper bound on index size
0 Higher-quality index: e.g. more links
® Small delay between crawl and index: "freshness"

MapReduce indexing system: Days from crawl to index

Incremental Indexing

® Maintain a random-access repository in Bigtable
®ndices let us avoid a global scan
® Incrementally mutate state as URLs are crawled

URL Contents Pagerank |Checksum Language
http://usenix.org/osdil0 <htmI>CFP. 6 OxabcdefO1 ENGLISH
http://nyt.com/ <html>Lede ... 9 Oxbeefcafe ENGLISH

Incremental Indexing on Bigtable

URL Checksum PageRank IsCanonical?
nyt.com OxabcdefO | 6 yeno
nytimes.com OxabcdefOl 9 yes

Checksum Canonical

OxabcdefOl nnytimes.com

What happens if we process both URLs
simultaneously?

Percolator: Incremental Infrastructure

Adds distributed transactions to Bigtable

(0) Transaction t;
(1) string contents =t.Get(row, "raw', "doc");
(2) Hash h = Hash32(contents);

/] Potential conflict wiwth concurrent executi on
(3) t.Set(h, "canonical", "dup table", row);

(4) t.Commt(); [/ TODO add retry logic

Simple API: Get(), Set(), Commit(), Iterate

Implementing Distributed Transactions

® Provides snapshot isolation semantics

® Multi-version protocol (mapped to Bigtable timestamps)
®Two phase commit, coordinated by client

® L ocks stored in special Bigtable columns:

"balance"
A
[|
balance:data balance:commit balance:lock
5: 5: 5:
. 4: 4: data @ 3 4:
Alice 130 ¢10 3 3

Transaction Commit

Transaction t;

Int a bal =t.Gt("Aice", "balance");
Int b bal =t.Get("Bob", "bal ance");
t.Set("Alice", "balance", a bal + 5);
t.Set("Bob", "balance", b _bal - 5);
t.Commt (),

balance:data balance:commit balance:lock
6:data @ 5
5:$I15 5: 5:
Alice 4: 4:data @ 3 4:
3:$10 3: 3:
6:data @ 5
5:$5 5: 5:
Ben 4: 4:data @ 3 4:
3:$10 3: 3:

Notifications: tracking work

Users register "observers” on a column:

® Executed when any row in that column is written
®Each observer runs in a new transaction

®Run at most once per write: "message collapsing”

Applications are structured as a series of Observers:

DocumentExporter

Linklnverter ’

RawDocumentLoader DocumentProcessor

Implementing Notifications

Dirty column: set if observers must be run in that row

Randomized distributed scan:
®Finds pending work, runs observers in thread pool
®Scan is efficient: only scans over bits themselves

No shards or work units: nothing to straggle

Dirty?

Alice Yes

Bob No

Running Percolator

——————————————————————————————

Each machine

runs. Observer Code

®Worker binary
linked with
observer code.

Percolator::RunWorker ()

®Bigtable tablet l R i\

server
o GFS Chunkserver Tablet : Tablet Tablet
Server : Server Server
\E\‘
GFS ! GFS GFS

>—XN

SPANNER

What is Spanner?

* Distributed multiversion database
General-purpose transactions (ACID)
SQL query language
Schematized tables

Semi-relational data model

* Running in production

Storage for Google’s ad data
Replaced a sharded MySQL database

Example: Social Network

Sao Paulo
Santiago
Buenos Aires

San Francisco p— E
Seattle

Arizona User posts

Friend lists

Moscow
Paris Berlin
Berlin Krakow
Madrid
Lisbon Russia

Spain

7/28/2013 VLDB Summer School 2013 124

Overview

e Feature: Lock-free distributed read
transactions

* Property: External consistency of distributed
transactions

o First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

> Correctness and performance

e Enabling technology: TrueTime
o Interval-based global time

Read Transactions

* Generate a page of friends’ recent posts

o Consistent view of friend list and their posts

Why consistency matters
|. Remove untrustworthy person X as friend

2. Post P:“My government is repressive...”

Single Machine

&)

Block writes

Friend| post

Friend2 post

Friend999 post Il:JS.er dPT-S:S
Friend 1000 post riend lists

7/28/2013 VLDB Summer School 2013

Generate my page

127

Multiple Machines

Block writes

Friend| post
Friend2 post

Friend999 post
Friend 1000 post

7/28/2013

g User posts

Ny Friend lists \

Generate my page

. @ o
""\..______________'____,_.ﬁ"
, /

VLDB Summer School 2013 128

Multiple

Datacenters

Friend| post
US

Friend2 post
Spain

Friend999 post

Brazil

Friend 1000 post
Russia

7/28/2013

VLDB Summer School 2013

Generate my page

N\

129

Version Management

* Transactions that write use strict 2PL
o Each transaction T is assigned a timestamp s

o Data written by T is timestamped with s

Time <8 8 |5
My friends [X] []
My posts [P]

X’s friends [me] []

Synchronizing Snapshots

Global wall-clock time

External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order

Timestamps, Global Clock

e Strict two-phase locking for write
transactions

 Assign timestamp while locks are held

Acquired locks Release locks

j__--—'-‘ T b

Timestamp Invariants

 Timestamp order == commit order

T

I

 Timestamp order respects global wall-time
order

I |

— | |
. T | |

|
Tzl |

TrueTime

» “Global wall-clock time” with bounded
uncertainty

TT.now()

> time

earliest latest

<€ >

2*e

Timestamps and TrueTime

Acquired locks Release locks

! v

T IR

|
T

average € average €

Commit Wait and Replication

- Start consensus Achieve consensus Notify slaves

Acquired locks Release locks
- T*
Pick s Commit wait done

7/28/2013 VLDB Summer School 2013 136

Commit Wait and 2-Phase Commit

Start logging Done logging

Acquired locks Release locks

R Vo

| - - | Committed

Notify participants of s
Acquired locks Release locks

‘1' v v ‘1’ |

\ "4

Tp) I A |
Acquired |ocks Relzase locks
| ‘1' \ \ ‘l' |
| T Prepared |
Send s
Compute s for each Commit wait done

Compute overall s

Example

Remove X

| from my friend | | Risky post P
ﬁ Tc | Hist | T, |

5c=6 s=8 s=15

Remove myself
from X’s friend list

| |
Tp | |
Sp~ s=8
Time <8 8 15
IS My friends [X]]
ﬁ M)’ posts [P]
B0 Xsfriends [me]]

TrueTime Architecture

GPS GPS GPS
timemaster timemaster timemaster
GPS Atomic-clock GPS
timemaster timemaster timemaster

Client
Datacenter | Datacenter 2 Datacenter n

Compute reference [earliest, latest] = now * ¢

TrueTime implementation

now = reference now =+ local-clock offset

€ = reference € + worst-case local-clock drift

+6ms 4
200 ps/sec

reference
uncertainty

Osec 30sec 60sec 90sec

> time

What If a Clock Goes Rogue?

e Timestamp assignhment would violate
external consistency

e Empirically unlikely based on | year of data
> Bad CPUs 6 times more likely than bad clocks

Discussion

* Transactional guarantees on distributed data

o Distributed synchronization is inevitable

* We discussed a few production systems that
explore different points of the space

* The exact system of choice is often
dependent on the application’s requirements

