

Abstract— Cloud computing is a latest new computing
paradigm where applications, data and IT services are
provided over the Internet. Cloud computing has become a
main medium for Software as a Service (SaaS) providers to
host their SaaS as it can provide the scalability a SaaS requires.
The challenges in the composite SaaS placement process rely on
several factors including the large size of the Cloud network,
SaaS competing resource requirements, SaaS interactions
between its components and SaaS interactions with its data
components. However, existing applications’ placement
methods in data centres are not concerned with the placement
of the component’s data. In addition, a Cloud network is much
larger than data center networks that have been discussed in
existing studies. This paper proposes a penalty-based genetic
algorithm (GA) to the composite SaaS placement problem in
the Cloud. We believe this is the first attempt to the SaaS
placement with its data in Cloud provider’s servers.
Experimental results demonstrate the feasibility and the
scalability of the GA.

I. INTRODUCTION
loud computing [1] is an emerging computing paradigm
in which applications, data and IT resources are

provided as a service to users over the Internet. One kind of
services that can be offered through the Cloud is Software as
a Service or SaaS [1], [2], [3]. Although SaaS can be
delivered without using the Cloud computing infrastructure,
with increasing demands for SaaS each year [4], SaaS
vendors have to find a solution to cope with these increasing
requests. Cloud providers can take this as an advantage as
Cloud infrastructure is by far the best option for supporting
SaaS as Cloud computing provides scalability that is much
needed by SaaS [4]. To date, however, little research has
been done on the SaaS placement problem. This research
aims to fill the gap by focusing on the initial placement of
SaaS in Cloud infrastructure.

A SaaS deployed in a Cloud is usually composed of
several components, where each of the components
represents a business function of the SaaS that is being
delivered [5]. Some of these components might be
dependent on other components, and some of the
components may need to access data files that are located in
Cloud storage servers. For SaaS placement in the Cloud, the
problem relates to how a composite SaaS should be placed

Z. Yusoh is with the Faculty of Information, Communication and
Technology, Universiti Teknikal Malaysia Melaka and currently a PhD
student with the Faculty of Science and Technology, Queensland University
of Technology, 2 George Street, Brisbane Australia (phone: 61-7-
31389519; email: zeratul.mohdyusoh@student.qut.edu.au)

M. Tang is with the Faculty of Science and Technology, Queensland
University of Technology, 2 George Street, Brisbane Australia (phone: 61-
7-31385225; email: m.tang@qut.edu.au)

in a Cloud by the Cloud’s providers such that its
performance is optimal based on its estimated execution
time. As we know, Cloud providers have many clusters of
servers located across the globe. For example, Amazon has
its storage servers in the United States and Europe, while
Nirvanix placed its servers in the United States, Germany
and Singapore [6]. The placement of SaaS components and
their related data components in the provider’s servers that
are located in geographically dispersed locations needs to be
done strategically, as the placement can directly affect the
resource usage as well as the SaaS performance.

The challenges in the SaaS placement process rely on
several factors, including the size of the Cloud network,
SaaS competing resource requirements, SaaS interactions
between its components and SaaS interactions with data
components. Interactions with data components play a
significant role in SaaS execution time as the data are
located at the Cloud servers instead of local machines [7][8].
Existing SaaS placement methods were not designed for the
Cloud. The methods mostly focus on the resource
consumption by the components and are not concerned with
the placement of the component’s data [9]-[13]. This
research will address this problem by proposing a genetic
algorithm for the composite SaaS placement problem in the
Cloud, which considers not only the placement of the
software components of a SaaS, but the placement of data of
the SaaS as well. To the best of our knowledge, this is the
first attempt to handle the SaaS placement problem in the
Cloud.

The remaining paper is organized as follows. Section II
discusses related work. The problem formulation is
described in Section III. Section IV presents the GA. Then
Section V is about the evaluation that has been carried out.
The concluding remark is presented in Section VI.

II. RELATED WORK
The problem of placing the components of a SaaS and

their related data in the Cloud is referred to as SaaS
Placement Problem (SPP). SPP shares some similar
characteristics with an existing problem called Component
Placement Problem (CPP). CPP is concerned with the
placement of an application’s components among available
servers [14]. Based on existing literature on CPP, the
problem can be further divided into two categories: 1)
offline CPP and, 2) online CPP, where in the online CPP the
placement of the components is made during the run-time.
SPP is more similar to the offline CPP as the placement of
the components is carried out at the initial stage. This section

A Penalty-based Genetic Algorithm for the Composite SaaS
Placement Problem in the Cloud

Zeratul Izzah Mohd Yusoh and Maolin Tang, Senior Member, IEEE

C

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 600

discusses the existing solutions for both types of CPP that
are relevant to SPP.

Several existing studies for the online CPP are concerned
with allocation of resources to an application’s components.
Among the resources that are commonly considered are
computation capacity [9]-[11][15], memory [9][15],
network bandwidth [10][16] and storage capacity [11]. The
main aim for the online CPP, usually, is to optimize the
resource usage by the components, and at the same time to
minimize the total execution time of the application
[9][11][12]. Several online CPPs have included an offline
CPP at the beginning of the placement. Although CPP shares
the same aims with SPP, none of these existing problems
considered the component’s communication with its data,
and the placement of the data in the network, whereby in
SPP this is the major concern since both components and
their data reside in the Cloud.

Reference [13] proposed a solution to an offline
application placement problem, namely Application
Component Placement (ACP), in a data center. In ACP, the
location of the data components is considered as one of the
decision factors. ACP also considers the application’s
processing communication and storage requirements in
making the decision. The communication here refers to the
amount of traffic that is transferred between the components
and between the components and the servers where the
application’s data are located. ACP is similar with SPP, but,
it is assumed that the location of the data in ACP is already
known prior to the placement process. The data location is
treated as an input to the placement problem, while in SPP
the data components are being placed together with SaaS
components.

A placement that is concerned with SaaS is presented in
[11]. That work considers a placement problem for SaaS
components in a multi-tenant architecture. The placement of
the components is made within a set of available servers, and
the main objective is to optimize the resource usage in each
server. The principal rule used by the placement approach is
rather straightforward, that is, a new instance of a
component should be deployed in a server with the smallest
residual resource left after having the instance. This is to
reserve servers that have larger residual resources for
instances that have a higher resource demand. That work
also proposes a resource computation model to calculate the
resource demand for an upcoming tenant, including the
storage requirement. Although that work is concerned with
SaaS placement, it is more focused on the multi-tenant
resource model and does not take into consideration the
SaaS’s data placement in the network.

To sum up, none of researches has considered the
placement of the application’s data together with the
application’s components. This is probably because the
application’s data reside at local machines instead of in the
data centre. In the SaaS placement case, the data as well as
the components will be located at the Cloud provider’s
servers. As such, the Cloud providers must apply a strategic

placement method in order to ensure the components and the
data are well placed and the SaaS performance is optimized.
This paper will propose a placement solution to address this
gap.

III. SAAS PLACEMENT PROBLEM
Fig. 1 shows a high level illustration of SPP. The

objective of the problem is to decide which server should
host the SaaS components such that the requirements are
satisfied and the SaaS performance is optimal based on its
estimated execution time. The SPP inputs are:

• a component-based SaaS with its requirement for
computation and memory (denoted as ‘S’ in Fig. 1),

• data components that the SaaS needs to access (denoted
as ‘D’ in Fig. 1), and

• a Cloud’s network topology with its computing servers
and storage servers. The servers’ geographical
locations are widely spread across the globe.

The decision of SPP will be based on estimated SaaS
execution time on a set of selected Cloud servers. The
calculation of the estimated execution time is mainly based
on the computing resources and data transfer time between
the servers that have a SaaS component, and the storage
servers that have the data of the SaaS. Other factors such as
geographical locations of users or the location of users’ data
are not considered at this stage as it is an initial placement of
a SaaS where such information is not yet available.

The following sections describe SPP problem formulation,
numerical attributes for the estimated execution time and
critical path method applied in the calculation process.

A. SPP Problem Formulation
1) SaaS Modelling: The SaaS modelling is made general

enough to represent a SaaS. Table I summarizes the SaaS
components’ requirements, workflows and its
communication. Followings are further descriptions on SaaS
requirement and its dependencies:

• SaaS Computing Requirements: Each component has
requirements for the servers on which it can be
hosted. For this problem, only the main requirements
will be considered. The requirements are the
computing capacity, memory size and the storage

Fig. 1. A high level illustration of SaaS Placement Problem (SPP)

601

size.
• Storage Access Requirements: Some components may

need to access data that are located in a Cloud storage
server. Based on Table I, the term ‘data chunk’
represents a set of data that may be accessed by the
component.

• Component Workflows: Dependencies of components
to components and components to data chunks are
depicted through the workflows. A SaaS may have
multiple workflows and each workflow has a
weighting. This value indicates the significance of a
workflow to the SaaS. These workflows are presented
by directed acyclic graphs (DAG). An example of a
SaaS multiple workflows is illustrated in Fig. 2.

2) Cloud Resource Modelling: This Cloud consists of
computing servers and storage servers. Each server has its
own attributes that are relevant to SaaS requirements such as
processing capacity, memory size, secondary storage
capacity and storage capacity. Table II summarizes the
resource sets and attributes.

3) Cloud Network Modelling: The Cloud network is
represented by an undirected graph, },{ EVG = .

DPV ∪= is the sets of vertices including computation
servers and storage servers, Ee∈ is the set of undirected
edges connecting the vertices, if and only if there exists a
physical link transmitting information from iv to jv , where

Vvv ji ∈, . +→ REB jviv :, and +→ REL jviv :, is a
bandwidth and latency functions of the link from iv to jv
respectively.

B. SPP Attributes
The objective of SPP is to place SaaS components and

their data in a set of computing servers and storage servers in
the Cloud such that the execution time of the SaaS is
minimized. The problem involves selecting the suitable
server to serve a component. To determine a suitable server
for a component, four numerical attributes will be used.
These attributes define the estimated execution time (in
seconds) of a component in a selected server and a total
estimated execution time of the SaaS that is being deployed.
Followings are the descriptions of the attributes.

1) Estimated Data Transfer Time (EDTT): EDTT is the
estimated time taken for transferring data between storage
servers and computing servers. As mentioned in a previous
section, some of the components may require an access to
data in storage servers. Given a current placement for a
component isc , EDTT is calculated based on iscAD the total
bytes of amount of read/write task of isc , ji dpB , , bandwidth
of the links involved, and ji dpL , , the latency that may occur
in those links.

ji

Eji ji

k
dp

vv dp

sc
k L

B
ADscEDTT ,

,
8)(

,
+×= ∑

∈

 (1)

2) Estimated Processing Time (EPT): EPT is the estimated

processing time for a component in a selected computing
server. It is based on the task size of a component, iscTS , the
processing capability of the selected server ipPC , and the
value of EDTT (refer Equation 1) if there is any. If a
component accesses more that one storage servers, only the
maximum value of EDTT will be considered.

)max()(EDTT
PC
TSscEPT

i

k

p

sc
k += (2)

3) Estimated Execution Time (EET): Equation 2 defines

the Estimated Processing Time (EPT) for a single
component in a SaaS. Some of the components may be
dependent on other components as depicted by workflows in
Fig. 2. Thus, a new computation is designed to calculate the
Estimated Execution Time (EET) for a path in a workflow. It
is based on the sum of EPT of each component in a path.
The EET is defined as:

 ∑
∈

=
kpathsc

ik scEPTpathEET)()((3)

4) Estimated Total Execution Time (ETET): ETET is the
estimated total execution time for the whole SaaS that is
being deployed in the Cloud. From Equation 3, the
Estimated Execution Time (EET) for all paths in the SaaS
workflows is obtained. These values are used to determine
the critical path of a workflow if the workflow has more than

TABLE I

SETS, PARAMETERS AND REQUIREMENTS OF SAAS

SaaS Modelling Description

SCisc ∈ Set of n SaaS components, and ni ≤≤1
DCdci ∈ Set of m data chunks that may be accessed

by SC , and mi ≤≤1
WFwfi ∈ Set of q SaaS workflows where SCWF ⊆ ,

and qi ≤≤1

iscTS Task size of isc
iscM Memory requirement of isc

iscS Size of isc
iscAD Amount of read/write task of isc

iscCDC Set of idc that may be accessed by isc , and
DCCDC ⊆

idcS Size of idc
iwfW Weighting for iwf

TABLE II
SETS AND ATTRIBUTES OF CLOUD RESOURCE

Cloud resources Description

Ppi ∈ Set of k computing servers, and ki ≤≤1
Ddi ∈ Set of r storage servers, and ri ≤≤1

ipPC Processing capacity of ip

ipMC Memory of ip

ipSS Secondary storage of ip

idSP Storage capacity of id

602

one path. Then, the Estimated Total Execution Time (ETET)
is defined by the sum of the Estimated Execution Time
(EET) of the critical path of each workflow multiplied by its
weighing as shown in Equation 4.

 ∑
=

×=
q

i
wfiWpathcriticalEETSaaSETET

1
)_()((4)

Where q is the number of SaaS workflows.

C. Critical Path
As mentioned in a previous section, a SaaS may have

multiple workflows. For example, a SaaS for photos editing
like Adobe Photoshop online [17], may have a workflow for
basic editing function, a workflow for graphical effects and
another workflow for uploading photos. These workflows
consist of several components, each of which represents a
specific task for a particular function. A workflow may have
multiple paths. And these paths may run in parallel. Fig. 2
shows an example of a SaaS that has two workflows. Based
on the example, workflow 1 has more than one path from the
‘Start’ component to the ‘Finish’ component. In this case, a
critical path algorithm will be applied.

In Fig. 2, a circular node ksc represents a SaaS component
where nk ≤≤1 , and n is the number of components. The
time consumed to execute ksc in a particular computing
server, ip is denoted at the lower half of the circle. This is
calculated based on the task size of ksc and the processing
capacity of ip . A square node with an arrow to a component
represents a data chunk, rdc , at a storage server, jd . The
time taken for data transfer from ip to jd is depicted at the
edge. The calculation for the time taken is defined in
Equation 1 (Estimated Data Transfer Time, EDDT). A
undirected edge jke , from ksc to jsc means that ksc has to
be executed first before jsc can be executed.

To determine the critical path, the graphs in Fig. 2 will be
converted to super graphs illustrated in Fig. 3. The super
graphs combine a circular node in Fig. 2 with its
corresponding square node. If there is more than one square
nodes involved, the maximum value will be selected. This
combination indicates the component’s Estimated
Processing Time (EPT) as described in Equation 2. The
value in the lower half of the circle depicts the value of
EPTs. The super graphs for Fig. 2 are shown in Fig. 3.

For each path in the super graphs, the estimated execution
time of a path (EET) is computed based on Equation 3. This
value will be used to determine the critical path of a
workflow in order to obtain the EET of each SaaS workflow.

The Estimated Total Execution Time (ETET) for the
whole SaaS will then be computed by Equation 4. It is based
on the EET for critical paths and its weighting. This value
will be used in the placement algorithm to determine the
optimal placement solution for SaaS components.

IV. A GENETIC ALGORITHM FOR SPP
From the computational point of view, SPP is a large-

scale and complex combinatorial optimization problem with
constraints, and a GA would be suitable for it. Thus, we
have developed a GA for SPP. In the following we discuss
the design of the GA in details.

A. Chromosome Representation
A chromosome in the GA represents a placement plan for
the SaaS. It consists of two compartments. The first
compartment contains n genes, each of which corresponds to
a software component, representing the computation server
where the software component would be placed in the
placement plan of the SaaS, where n is the total number of
software components in the SaaS. The second compartment
holds m genes, each of which corresponds to a data chunk
that is used in the SaaS, standing for the storage server
where the data chunk would be stored in the placement of
the SaaS. Each gene in the chromosome is represented in a
triple <C, R, S>, where C, R and S are the IDs for continent,
region and server, respectively. Fig. 4 shows a gene
encoding and an instance of the chromosome representation,
where the total number of software components in the SaaS
is 10 and the total number of data chunks is 10 as well.

5

6

Fig. 2. Directed Acyclic Graphs for SaaS workflows

Fig. 3. Directed Acyclic Super Graphs for SaaS workflows

603

1 42 700

Crossover point

Parent
1

SC1

Crossover

1 5 234 3 78 466 ... 2 2 17

SC2 SC3 ... SCn

3 31 313
Parent

2

SC1

4 1 666 2 90 111 ... 4 4 763

SC2 SC3 ... SCn

1 42 700
Child

1

SC1

1 5 234 2 90 111 ... 4 4 763

SC2 SC3 ... SCn

3 31 313
Child

2

SC1

4 1 666 3 73 466 ... 2 2 17

SC2 SC3 ... SCn

1 42 700

SC1

1 5 234 3 78 466 ... 2 2 17

SC2 SC3 ... SCn

2 3 34

DC1

1 6 357 1 8 54 ... 2 2 769

DC2 DC3 ... DCn

SaaS
Component

Data chunks

Mutation

2 42 700

SC1

1 6 234 3 78 466 ... 2 2 700

SC2 SC3 ... SCn

2 3 34

DC1

1 6 357 1 8 54 ... 2 2 769

DC2 DC3 ... DCn

SaaS
Component

Data chunks

Fig. 5. : An example of crossover operation for SaaS computing servers

Fig. 6. : An example of mutation operation

B. Infeasible Encoding Problem
The representation naturally maps a SaaS placement plan

into a chromosome of the GA. However, it has a deficiency,
which is the individuals generated randomly in the initial
population and individuals generated by the genetic
operators, which will be discussed in the following, may not
be feasible. For example, on continent one there are only 10
regions, the genetic operator may produce an individual <1,
11, 1>, indicating the corresponding software component or
data chunk would be located at the 11th region of the 1st
continent, which does not exist. Thus, in order to handle the
infeasible encoding problem, we developed an infeasible
encoding repairing technique.

The repairing technique performs a simple check in each
gene to find any invalid codes for servers. Each gene should
contain a set of three valid integers that represent an existing
server in the Cloud. If any of these integers is invalid, that is,
an invalid code for continent, region or server, another
integer will be randomly generated based on a correct range
of the codes.

C. Genetic Operators
Crossover: The crossover operation is a classical one

point crossover. The point of crossover is between the
segments of genes in a chromosome. The crossover
operation combines segments from two selected parents and
produces two children. The top two fittest among the parents
and children are selected into the next generation. Fig. 5
illustrates the crossover operation.

 Mutation: To promote further exploration in the search
space, a mutation operator is used in order to keep the
diversity of the genes in the population. The mutation
operator is a knowledge-based one that changes the
computation server of a particular component to another
computation server such that the new computation server

located closely to the storage server that has the
component’s data. By doing this, the data transfer time
between the storage servers to the computation servers can
be minimized; hence can reduce the SaaS’ total execution
time.

Mutation operation is applied to each gene in a selected
chromosome. As described in a previous section, the gene
represents the location of a computation server that holds a
particular SaaS component. The operation will be conducted
by randomly selecting any integer in a gene and replacing it
with another server that is closer to the data. Based on the
SaaS requirement in Table I, a component may access one or
more data chunks. As such, the data chunk that has the
highest EDTT (Equation 1) is selected as the component’s
new location. This mutation may change the SaaS
component location to a computation server that is located in
the same continent or same region as the storage server that
has the component’s data; hence it has a better bandwidth
value. Fig. 6 illustrates the mutation operation.

D. Fitness Function
As the aim of the placement is to achieve the optimal

performance of the SaaS that is being deployed, the main
attribute for the fitness function evaluation is the Estimate
Total Execution Time (ETET) for the SaaS components. The
calculation for ETET is defined in Equation 4.

The requirements of each SaaS component are treated as
the constraints of this placement problem. There are two
main constraints that need to be fulfilled by the solutions 1)

1C , component’s memory requirement and 2) 2C ,
component’s secondary storage requirement.

Chromosomes that were generated may violate these
constraints, making the placement infeasible. However, to
fully discard these chromosomes from the population is
unaffordable, as the chromosome may contain some useful
building blocks in its genes. This is important in order to

Fig. 4. : An example of gene and chromosome encoding scheme with 10 SaaS components and 10 data chunks

604

produce fitter children for the next generations. Therefore, to
handle this situation, the following strategy is applied to
these infeasible chromosomes. A penalty will be imposed to
the fitness value of chromosomes that have violated 1C
and/or 2C such that any infeasible chromosome will always
have a lower fitness value than any feasible chromosome.
The fitness function is defined as follow:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

×
×

=
×

+

=

∑
=

otherwise
XCXETET

PopETET

XCif
XETET
PopETET

XFitness

i
i

2

1
)(

1
2)(
)(*

0)(
2)(
)(*5.0

)(

 (5)
where)(* PopETET is the minimum value of Estimate

Total Execution Time in a population, Pop , and it is
defined as:

())(min)(* XETETPopETET = (6)
where X is a solution in the population, PopX ∈ .
Equation 5 guarantees that feasible chromosomes always

have a fitness value greater 0.5 and infeasible chromosomes
always have a fitness value less than 0.5, and that for
infeasible chromosomes the more constraints are not
satisfied, the less their fitness values are.

V. EVALUATION
The GA described above has been implemented and

tested. The programming language used was Microsoft .NET
Visual Studio C++ 6.0. The test was focused on the
scalability of the GA. Two sets of experiments were done.
One set of experiments was to look at how the computation
time of the GA increases when the scale of the Cloud
increases; another was to find the increasing trend of the
computation time of the GA when the number of software
components and data chunks increases.

The experiment was conducted on several randomly
generated SaaS placement problems with five to 20
components and data chunks. The Cloud was randomly
created as well. The attributes of the nodes, including
computation servers and storage servers, were randomly
generated using the models presented in [18] [19].

A. Experiments on the size of Cloud network
This experiment was to study the relationship between the

computation time and the size of the cloud network. In this
experiment, we tested the GA for a Cloud that contained
from 200 to 1200 servers, with an increment of 200. The
numbers of SaaS components and data chunks were both
fixed at 10. The parameters setting for the GA is listed in
Table III and the characteristics of the problem are shown in
Table V.

The experiments were carried out on a desktop computer
with 2.33 GHz Intel Core 2 Duo CPU and 2GB RAM. Table
V shows the statistic of the experimental results.

Considering the nature of the GA, each of the test cases was
repeated 10 times. The test results include the minimal,
maximal and average values of estimated total execution
time (ETET) of the SaaS based on its placement, and the
minimal, maximal, and average computation times spent on
finding the placement solution for each of the
configurations. Fig. 7 visualises the average computation
time taken on finding the solution for each of the test cases.
It can be seen that the computation time of the GA appears
to grow close to linearly with the size of the Cloud.

B. Experiments on the number of SaaS components
This experiment was to observe the computation time

when the number of SaaS components and data chunks
increase. The numbers of SaaS components and data chunk
were set from five to 20 with an increment of five. The cloud
contained up to 600 computation servers and storage servers.
The same server’s capacities and network were used in each
test case.

All the experiments were conducted in a desktop
computer with 2.66 GHz Intel Core 2 Duo CPU and 3.23GB
RAM. For this experiment, the parameter settings used for
the GA are listed in Table IV. The test cases, its
configurations, the statistical results of the solutions and
computation times taken are shown in Table VI.
Experiments for each test case were conducted for 10 times.
Fig. 8 shows the average computation time taken on finding
the solutions. The result shows that the computation time
increased close to linearly with the number of components.

TABLE III
PARAMETER SETTINGS FOR EXPERIMENTS ON

THE SIZE OF CLOUD NETWORK
Parameter Value/Condition

Population size 150
Initial population Randomly generated solutions
Crossover probability 0.95
Mutation probability 0.15
Maximum generation 200
Termination condition Maximum generation

TABLE IV
PARAMETER SETTINGS FOR EXPERIMENTS ON

THE NUMBER OF SAAS COMPONENTS
Parameter Value/Condition

Population size 150
Initial population Randomly generated solutions
Crossover probability 0.95
Mutation probability 0.15
Termination condition No improvement for the best

individual in ten consecutive
generations

605

VI. CONCLUSION AND FUTURE WORK
This paper has presented the problem formulation and

modelling of a composite SaaS placement problem on
clusters of Cloud physical servers. The problem can be
classified as an optimisation problem where the aim is to
optimise the performance of the SaaS based on its estimated
execution time. A penalty-based GA is used, and the GA is
designed in such way that it considers not only the
placement of the software components of a SaaS, but the
placement of data of the SaaS as well. We believe that our
solution is the first attempt on the composite SaaS placement
problem considering data storage in the Cloud. Based on the
experiments conducted, the GA always produces a feasible
solution for all the test problems in all the experiments. It
also can be seen that the proposed GA is scalable. The
computation time increases close to linearly when the size of
the Cloud increases and when the number of components is
increased.

Our work can be improved in a number of ways. First,

although the GA has proved its scalability, the computation
time taken in finding the solutions can be further improved.
This can be done by implementing the GA in a parallel
manner. The network can be decomposed into several
segments, and the solution can be executed in parallel based
on the segmentations.

Second, our technique is implemented in a centralised
location. With large size of Cloud networks, better
performance of the solution may be achieved if the
technique is implemented in several decentralised locations
based on Cloud providers’ need. However, further research
is needed to determine the suitability of the decentralised
strategy with SaaS model in order to improve the
performance of SaaS in Cloud.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their

valuable comments on this paper.
This research was carried out as part of the activities of,

and funded by the Smart Services Cooperative Research

TABLE V
EXPERIMENTAL RESULTS OF THE GA ON THE SIZE OF CLOUD NETWORK

Test
Case

Problem Size ETET (s) Computation Time (mins)

DP ∪ SC DC Min Max Ave StDev Min Max Ave StDev
1 200 10 10 1298.68 1515.61 1414.01 63.548 12 12 12 0
2 400 10 10 1264.57 1554.34 1397.44 97.05 72 75 73.3 0.95
3 600 10 10 1234.64 1806.42 1375.32 171.57 149 155 151.1 2.01
4 800 10 10 1204.23 1383.04 1319.49 63.655 275 285 278.2 2.82
5 1000 10 10 1247.18 1538.13 1340.53 93.375 379 393 385 4.27
6 1200 10 10 1199.03 1376.68 1316.23 50.963 608 620 613.6 4.2

TABLE VI
EXPERIMENTAL RESULTS OF THE GA ON THE NUMBER OF SAAS COMPONENTS

Test
Case

Problem Size ETET (s) Computation Time (mins)

DP ∪ SC DC Min Max Ave StDev Min Max Ave StDev
1 600 5 5 659.486 727.438 684.811 20.02 10 24 14.1 4.56
2 600 10 10 861.877 1132.87 986.522 93.53 45 103 71.5 20.81
3 600 15 15 1322.49 1579.95 1407.13 90.366 66 166 100.3 34.0
4 600 20 20 1154.01 1534 1398.23 105.6 82 192 113.1 34.1

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

Co
m

pu
ta

tio
n

tim
es

 (m
in

ut
es

)

Number of servers

Fig. 7. : Experiment on the size of Cloud network

0

20

40

60

80

100

120

0 5 10 15 20

Co
m

pu
ta

tio
n

tim
es

 (m
in

ut
es

)

Number of components

Fig. 8. : Experiment on the number of components

606

Centre (CRC) through the Australian Government's CRC
Programme (Department of Innovation, Industry, Science
and Research).

REFERENCES
[1] Foster, I., Yong, Z., Raicu, I., & Lu, S., Cloud Computing and Grid

Computing 360-Degree Compared, in Grid Computing Environments
Workshop. 2008, IEEE: Austin, Texas. p. 1-10.

[2] Aymerich, F.M., Fenu, G., & Surcis, S., An approach to a Cloud
Computing network, in Proceedings of IEEE Applications of Digital
Information and Web Technologies. 2008, IEEE: Ostrava, Czech
Republic. p. 113-118.

[3] Vaquero, L.M., Rodero-Merino, L., Caceres, J., & Lindner, M., A
Break in the Clouds: Towards a Cloud Definition. SIGCOMM
Computer Communication Review, 2009. 39(1): p. 50-55.

[4] Candan, K.S., Li, W.S., Phan, T., & Zhou, M., Frontiers in
information and Software as Services, in Proceeding of the IEEE 25th
International Conference on Data Engineering. 2009, IEEE:
Shanghai, China. p. 1761-1768.

[5] Laplante, P.A., Jia, Z., & Voas, J., What's in a name? Distinguishing
between SaaS and SOA. IT Professional, 2008. 10(3): p. 46-50.

[6] Broberg, J., Buyya, R., & Tari, Z., MetaCDN: Harnessing storage
clouds for high performance content delivery, in Proceeding of the
Sixth International Conference on Service-Oriented Computing. 2008,
ACM: Sydney, Australia.

[7] Gartner Inc (2007) Introducing SaaS-enabled application platforms:
Features, roles and futures.

[8] Motahari-Nezhad, H.R., Stephenson, B., & Singhal, S., Outsourcing
Business to Cloud Computing Services: Opportunities and
Challenges. HP Laboratories–2009.

[9] Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M.,
Sviridenko, M., et al., Dynamic placement for clustered web
applications, in 15th International Conference on World Wide Web.
2006, ACM New York: Edinburgh, Scotland. p. 595-604.

[10] Kichkaylo, T., Ivan, A., & Karamcheti, V., Constrained component
deployment in wide-area networks using AI planning techniques. In
Parallel and Distributed Processing Symposium, 2003. Proceedings.
International. 2003.

[11] Kwok, T. & Mohindra, A., Resource calculations with constraints,
and placement of tenants and instances for multi-tenant SaaS
applications, in Sixth International Conference on Service-Oriented
Computing. 2008, Springer: Sydney, Australia. p. 633-648.

[12] Urgaonkar, B., Rosenberg, A.L., Shenoy, P. & Zomaya, A.,
Application placement on a cluster of servers. International Journal of
Foundations of Computer Science, 2007. 18(5): p. 1023-1041.

[13] Zhu, X., Santos, C., Beyer, D., Ward, J., & Singhal, S., Automated
application component placement in data centers using mathematical
programming. International Journal of Network Management, 2008.
18(6): p. 467-483.

[14] Zimmerova, B. Component placement in distributed environment wrt
component interaction. In Proceedings of the Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science. Czech
Republic: FIT VUT Brno, Czech Republic.

[15] Tang, C., Steinder, M., Spreitzer, M., & Pacifici, G., A scalable
application placement controller for enterprise data centers. In
Proceedings of the 16th International World Wide Web Conference
2007, Canada: ACM. p. 331-340.

[16] Low, C., Decentralised application placement. Future Generation
Computer Systems, 2005. 21(2): p. 281-290.

[17] http://www.photoshop.com
[18] http://www-07.ibm.com/storage/au/
[19] http://h71028.www7.hp.com/enterprise/cache/418226-0-0-14-

121.html

607

