
 
 

 

  

Abstract— Cloud computing is a latest new computing 
paradigm where applications, data and IT services are 
provided over the Internet. Cloud computing has become a 
main medium for Software as a Service (SaaS) providers to 
host their SaaS as it can provide the scalability a SaaS requires. 
The challenges in the composite SaaS placement process rely on 
several factors including the large size of the Cloud network, 
SaaS competing resource requirements, SaaS interactions 
between its components and SaaS interactions with its data 
components. However, existing applications’ placement 
methods in data centres are not concerned with the placement 
of the component’s data. In addition, a Cloud network is much 
larger than data center networks that have been discussed in 
existing studies. This paper proposes a penalty-based genetic 
algorithm (GA) to the composite SaaS placement problem in 
the Cloud. We believe this is the first attempt to the SaaS 
placement with its data in Cloud provider’s servers. 
Experimental results demonstrate the feasibility and the 
scalability of the GA. 

I. INTRODUCTION 
loud computing [1] is an emerging computing paradigm 
in which applications, data and IT resources are 

provided as a service to users over the Internet. One kind of 
services that can be offered through the Cloud is Software as 
a Service or SaaS [1], [2], [3]. Although SaaS can be 
delivered without using the Cloud computing infrastructure, 
with increasing demands for SaaS each year [4], SaaS 
vendors have to find a solution to cope with these increasing 
requests. Cloud providers can take this as an advantage as 
Cloud infrastructure is by far the best option for supporting 
SaaS  as Cloud computing provides scalability that is much 
needed by SaaS [4]. To date, however, little research has 
been done on the SaaS placement problem. This research 
aims to fill the gap by focusing on the initial placement of 
SaaS in Cloud infrastructure. 

A SaaS deployed in a Cloud is usually composed of 
several components, where each of the components 
represents a business function of the SaaS that is being 
delivered [5].  Some of these components might be 
dependent on other components, and some of the 
components may need to access data files that are located in 
Cloud storage servers. For SaaS placement in the Cloud, the 
problem relates to how a composite SaaS should be placed 
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in a Cloud by the Cloud’s providers such that its 
performance is optimal based on its estimated execution 
time. As we know, Cloud providers have many clusters of 
servers located across the globe. For example, Amazon has 
its storage servers in the United States and Europe, while 
Nirvanix placed its servers in the United States, Germany 
and Singapore [6]. The placement of SaaS components and 
their related data components in the provider’s servers that 
are located in geographically dispersed locations needs to be 
done strategically, as the placement can directly affect the 
resource usage as well as the SaaS performance.  

The challenges in the SaaS placement process rely on 
several factors, including the size of the Cloud network, 
SaaS competing resource requirements, SaaS interactions 
between its components and SaaS interactions with data 
components. Interactions with data components play a 
significant role in SaaS execution time as the data are 
located at the Cloud servers instead of local machines [7][8]. 
Existing SaaS placement methods were not designed for the 
Cloud. The methods mostly focus on the resource 
consumption by the components and are not concerned with 
the placement of the component’s data [9]-[13]. This 
research will address this problem by proposing a genetic 
algorithm for the composite SaaS placement problem in the 
Cloud, which considers not only the placement of the 
software components of a SaaS, but the placement of data of 
the SaaS as well. To the best of our knowledge, this is the 
first attempt to handle the SaaS placement problem in the 
Cloud. 

The remaining paper is organized as follows. Section II 
discusses related work. The problem formulation is 
described in Section III. Section IV presents the GA. Then 
Section V is about the evaluation that has been carried out. 
The concluding remark is presented in Section VI.  

II. RELATED WORK 
The problem of placing the components of a SaaS and 

their related data in the Cloud is referred to as SaaS 
Placement Problem (SPP).  SPP shares some similar 
characteristics with an existing problem called Component 
Placement Problem (CPP). CPP is concerned with the 
placement of an application’s components among available 
servers [14]. Based on existing literature on CPP, the 
problem can be further divided into two categories: 1) 
offline CPP and, 2) online CPP, where in the online CPP the 
placement of the components is made during the run-time. 
SPP is more similar to the offline CPP as the placement of 
the components is carried out at the initial stage. This section 
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discusses the existing solutions for both types of CPP that 
are relevant to SPP.  

Several existing studies for the online CPP are concerned 
with allocation of resources to an application’s components. 
Among the resources that are commonly considered are 
computation capacity [9]-[11][15], memory [9][15],  
network bandwidth [10][16] and storage capacity [11].  The 
main aim for the online CPP, usually, is to optimize the 
resource usage by the components, and at the same time to 
minimize the total execution time of the application 
[9][11][12]. Several online CPPs have included an offline 
CPP at the beginning of the placement. Although CPP shares 
the same aims with SPP, none of these existing problems 
considered the component’s communication with its data, 
and the placement of the data in the network, whereby in 
SPP this is the major concern since both components and 
their data reside in the Cloud.   

Reference [13] proposed a solution to an offline 
application placement problem, namely Application 
Component Placement (ACP), in a data center. In ACP, the 
location of the data components is considered as one of the 
decision factors. ACP also considers the application’s 
processing communication and storage requirements in 
making the decision. The communication here refers to the 
amount of traffic that is transferred between the components 
and between the components and the servers where the 
application’s data are located. ACP is similar with SPP, but, 
it is assumed that the location of the data in ACP is already 
known prior to the placement process. The data location is 
treated as an input to the placement problem, while in SPP 
the data components are being placed together with SaaS 
components.  

A placement that is concerned with SaaS is presented in 
[11]. That work considers a placement problem for SaaS 
components in a multi-tenant architecture. The placement of 
the components is made within a set of available servers, and 
the main objective is to optimize the resource usage in each 
server. The principal rule used by the placement approach is 
rather straightforward, that is, a new instance of a 
component should be deployed in a server with the smallest 
residual resource left after having the instance. This is to 
reserve servers that have larger residual resources for 
instances that have a higher resource demand. That work 
also proposes a resource computation model to calculate the 
resource demand for an upcoming tenant, including the 
storage requirement. Although that work is concerned with 
SaaS placement, it is more focused on the multi-tenant 
resource model and does not take into consideration the 
SaaS’s data placement in the network. 

To sum up, none of researches has considered the 
placement of the application’s data together with the 
application’s components. This is probably because the 
application’s data reside at local machines instead of in the 
data centre. In the SaaS placement case, the data as well as 
the components will be located at the Cloud provider’s 
servers. As such, the Cloud providers must apply a strategic 

placement method in order to ensure the components and the 
data are well placed and the SaaS performance is optimized. 
This paper will propose a placement solution to address this 
gap. 

 

III. SAAS PLACEMENT PROBLEM 
Fig. 1 shows a high level illustration of SPP. The 

objective of the problem is to decide which server should 
host the SaaS components such that the requirements are 
satisfied and the SaaS performance is optimal based on its 
estimated execution time. The SPP inputs are: 

• a component-based SaaS with its requirement for 
computation and memory (denoted as ‘S’ in Fig. 1), 

• data components that the SaaS needs to access (denoted 
as ‘D’ in Fig. 1), and 

• a Cloud’s network topology with its computing servers 
and storage servers. The servers’ geographical 
locations are widely spread across the globe. 

The decision of SPP will be based on estimated SaaS 
execution time on a set of selected Cloud servers. The 
calculation of the estimated execution time is mainly based 
on the computing resources and data transfer time between 
the servers that have a SaaS component, and the storage 
servers that have the data of the SaaS. Other factors such as 
geographical locations of users or the location of users’ data 
are not considered at this stage as it is an initial placement of 
a SaaS where such information is not yet available.  

The following sections describe SPP problem formulation, 
numerical attributes for the estimated execution time and 
critical path method applied in the calculation process. 

A. SPP Problem Formulation 
1) SaaS Modelling: The SaaS modelling is made general 

enough to represent a SaaS. Table I summarizes the SaaS 
components’ requirements, workflows and its 
communication. Followings are further descriptions on SaaS 
requirement and its dependencies: 

• SaaS Computing Requirements: Each component has 
requirements for the servers on which it can be 
hosted. For this problem, only the main requirements 
will be considered. The requirements are the 
computing capacity, memory size and the storage 

 
Fig. 1.  A high level illustration of SaaS Placement Problem (SPP) 
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size. 
• Storage Access Requirements: Some components may 

need to access data that are located in a Cloud storage 
server. Based on Table I, the term ‘data chunk’ 
represents a set of data that may be accessed by the 
component.  

• Component Workflows: Dependencies of components 
to components and components to data chunks are 
depicted through the workflows. A SaaS may have 
multiple workflows and each workflow has a 
weighting. This value indicates the significance of a 
workflow to the SaaS. These workflows are presented 
by directed acyclic graphs (DAG). An example of a 
SaaS multiple workflows is illustrated in Fig. 2.  

2) Cloud Resource Modelling: This Cloud consists of 
computing servers and storage servers. Each server has its 
own attributes that are relevant to SaaS requirements such as 
processing capacity, memory size, secondary storage 
capacity and storage capacity. Table II summarizes the 
resource sets and attributes. 

3) Cloud Network Modelling:  The Cloud network is 
represented by an undirected graph, },{ EVG = . 

DPV ∪=  is the sets of vertices including computation 
servers and storage servers, Ee∈  is the set of undirected 
edges connecting the vertices, if and only if there exists a 
physical link transmitting information from iv to jv , where 

Vvv ji ∈, . +→ REB jviv :, and +→ REL jviv :,  is a 
bandwidth and latency functions of the link from iv  to jv  
respectively. 

B. SPP Attributes 
The objective of SPP is to place SaaS components and 

their data in a set of computing servers and storage servers in 
the Cloud such that the execution time of the SaaS is 
minimized. The problem involves selecting the suitable 
server to serve a component. To determine a suitable server 
for a component, four numerical attributes will be used. 
These attributes define the estimated execution time (in 
seconds) of a component in a selected server and a total 
estimated execution time of the SaaS that is being deployed. 
Followings are the descriptions of the attributes. 

1) Estimated Data Transfer Time (EDTT): EDTT is the 
estimated time taken for transferring data between storage 
servers and computing servers. As mentioned in a previous 
section, some of the components may require an access to 
data in storage servers. Given a current placement for a 
component isc , EDTT is calculated based on iscAD the total 
bytes of amount of read/write task of isc , ji dpB , , bandwidth 
of the links involved, and ji dpL , , the latency that may occur 
in those links. 
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2) Estimated Processing Time (EPT): EPT is the estimated 

processing time for a component in a selected computing 
server. It is based on the task size of a component, iscTS , the 
processing capability of the selected  server ipPC , and the 
value of EDTT (refer Equation 1) if there is any. If a 
component accesses more that one storage servers, only the 
maximum value of EDTT will be considered. 
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3) Estimated Execution Time (EET): Equation 2 defines 

the Estimated Processing Time (EPT) for a single 
component in a SaaS. Some of the components may be 
dependent on other components as depicted by workflows in 
Fig. 2. Thus, a new computation is designed to calculate the 
Estimated Execution Time (EET) for a path in a workflow. It 
is based on the sum of EPT of each component in a path. 
The EET is defined as:  

 ∑
∈

=
kpathsc

ik scEPTpathEET )()(          (3) 

4) Estimated Total Execution Time (ETET): ETET is the 
estimated total execution time for the whole SaaS that is 
being deployed in the Cloud. From Equation 3, the 
Estimated Execution Time (EET) for all paths in the SaaS 
workflows is obtained. These values are used to determine 
the critical path of a workflow if the workflow has more than 

 
TABLE I 

SETS, PARAMETERS AND REQUIREMENTS OF SAAS 

SaaS Modelling Description 

SCisc ∈  Set of n  SaaS components, and ni ≤≤1  
DCdci ∈  Set of m  data chunks that may be accessed 

by SC , and mi ≤≤1  
WFwfi ∈  Set of q  SaaS workflows where SCWF ⊆ , 

and qi ≤≤1  

iscTS  Task size of isc  
iscM  Memory requirement of isc  

iscS  Size of isc  
iscAD  Amount of read/write task of isc   

iscCDC  Set of idc that may be accessed by isc , and 
DCCDC ⊆  

idcS  Size of idc  
iwfW  Weighting for iwf  

TABLE II 
SETS AND ATTRIBUTES OF CLOUD RESOURCE 

Cloud resources Description 

Ppi ∈  Set of k  computing servers, and ki ≤≤1  
Ddi ∈  Set of r storage servers, and ri ≤≤1  

ipPC  Processing capacity of ip  

ipMC  Memory of ip  

ipSS  Secondary storage of ip  

idSP  Storage capacity of id   
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one path. Then, the Estimated Total Execution Time (ETET) 
is defined by the sum of the Estimated Execution Time 
(EET) of the critical path of each workflow multiplied by its 
weighing as shown in Equation 4. 

 ∑
=

×=
q

i
wfiWpathcriticalEETSaaSETET

1
)_()(   (4) 

Where q  is the number of SaaS workflows. 

C. Critical Path 
As mentioned in a previous section, a SaaS may have 

multiple workflows. For example, a SaaS for photos editing 
like Adobe Photoshop online [17], may have a workflow for 
basic editing function, a workflow for graphical effects and 
another workflow for uploading photos. These workflows 
consist of several components, each of which represents a 
specific task for a particular function. A workflow may have 
multiple paths. And these paths may run in parallel. Fig. 2 
shows an example of a SaaS that has two workflows. Based 
on the example, workflow 1 has more than one path from the 
‘Start’ component to the ‘Finish’ component. In this case, a 
critical path algorithm will be applied. 

In Fig. 2, a circular node ksc represents a SaaS component 
where nk ≤≤1 , and n is the number of components. The 
time consumed to execute ksc  in a particular computing 
server, ip is denoted at the lower half of the circle. This is 
calculated based on the task size of ksc  and the processing 
capacity of ip . A square node with an arrow to a component 
represents a data chunk, rdc , at a storage server, jd . The 
time taken for data transfer from ip  to jd  is depicted at the 
edge. The calculation for the time taken is defined in 
Equation 1 (Estimated Data Transfer Time, EDDT). A 
undirected edge jke , from ksc  to jsc  means that ksc  has to 
be executed first before jsc  can be executed.  

To determine the critical path, the graphs in Fig. 2 will be 
converted to super graphs illustrated in Fig. 3. The super 
graphs combine a circular node in Fig. 2 with its 
corresponding square node. If there is more than one square 
nodes involved, the maximum value will be selected. This 
combination indicates the component’s Estimated 
Processing Time (EPT) as described in Equation 2. The 
value in the lower half of the circle depicts the value of 
EPTs. The super graphs for Fig. 2 are shown in Fig. 3.  

For each path in the super graphs, the estimated execution 
time of a path (EET) is computed based on Equation 3. This 
value will be used to determine the critical path of a 
workflow in order to obtain the EET of each SaaS workflow. 

The Estimated Total Execution Time (ETET) for the 
whole SaaS will then be computed by Equation 4. It is based 
on the EET for critical paths and its weighting. This value 
will be used in the placement algorithm to determine the 
optimal placement solution for SaaS components. 

 

IV.  A GENETIC ALGORITHM FOR SPP 
From the computational point of view, SPP is a large-

scale and complex combinatorial optimization problem with 
constraints, and a GA would be suitable for it. Thus, we 
have developed a GA for SPP.  In the following we discuss 
the design of the GA in details. 

A. Chromosome Representation 
A chromosome in the GA represents a placement plan for 
the SaaS. It consists of two compartments. The first 
compartment contains n genes, each of which corresponds to 
a software component, representing the computation server 
where the software component would be placed in the 
placement plan of the SaaS, where n is the total number of 
software components in the SaaS. The second compartment 
holds m genes, each of which corresponds to a data chunk 
that is used in the SaaS, standing for the storage server 
where the data chunk would be stored in the placement of 
the SaaS. Each gene in the chromosome is represented in a 
triple <C, R, S>, where C, R and S are the IDs for continent, 
region and server, respectively.  Fig. 4 shows a gene 
encoding and an instance of the chromosome representation, 
where the total number of software components in the SaaS 
is 10 and the total number of data chunks is 10 as well. 

5

6

Fig. 2.  Directed Acyclic Graphs for SaaS workflows 

 
Fig. 3.  Directed Acyclic Super Graphs for SaaS workflows 
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Fig. 5.  : An example of crossover operation for SaaS computing servers 
 

Fig. 6.  : An example of mutation operation 
 

B. Infeasible Encoding Problem 
The representation naturally maps a SaaS placement plan 

into a chromosome of the GA. However, it has a deficiency, 
which is the individuals generated randomly in the initial 
population and individuals generated by the genetic 
operators, which will be discussed in the following, may not 
be feasible. For example, on continent one there are only 10 
regions, the genetic operator may produce an individual <1, 
11, 1>, indicating the corresponding software component or 
data chunk would be located at the 11th region of the 1st 
continent, which does not exist. Thus, in order to handle the 
infeasible encoding problem, we developed an infeasible 
encoding repairing technique. 

The repairing technique performs a simple check in each 
gene to find any invalid codes for servers. Each gene should 
contain a set of three valid integers that represent an existing 
server in the Cloud. If any of these integers is invalid, that is, 
an invalid code for continent, region or server, another 
integer will be randomly generated based on a correct range 
of the codes.  

C. Genetic Operators 
Crossover: The crossover operation is a classical one 

point crossover. The point of crossover is between the 
segments of genes in a chromosome. The crossover 
operation combines segments from two selected parents and 
produces two children. The top two fittest among the parents 
and children are selected into the next generation. Fig. 5 
illustrates the crossover operation.  

 Mutation: To promote further exploration in the search 
space, a mutation operator is used in order to keep the 
diversity of the genes in the population. The mutation 
operator is a knowledge-based one that changes the 
computation server of a particular component to another 
computation server such that the new computation server 

located closely to the storage server that has the 
component’s data. By doing this, the data transfer time 
between the storage servers to the computation servers can 
be minimized; hence can reduce the SaaS’ total execution 
time.   

Mutation operation is applied to each gene in a selected 
chromosome. As described in a previous section, the gene 
represents the location of a computation server that holds a 
particular SaaS component. The operation will be conducted 
by randomly selecting any integer in a gene and replacing it 
with another server that is closer to the data. Based on the 
SaaS requirement in Table I, a component may access one or 
more data chunks. As such, the data chunk that has the 
highest EDTT (Equation 1) is selected as the component’s 
new location. This mutation may change the SaaS 
component location to a computation server that is located in 
the same continent or same region as the storage server that 
has the component’s data; hence it has a better bandwidth 
value. Fig. 6 illustrates the mutation operation.  

D. Fitness Function 
As the aim of the placement is to achieve the optimal 

performance of the SaaS that is being deployed, the main 
attribute for the fitness function evaluation is the Estimate 
Total Execution Time (ETET) for the SaaS components. The 
calculation for ETET is defined in Equation 4.  

The requirements of each SaaS component are treated as 
the constraints of this placement problem. There are two 
main constraints that need to be fulfilled by the solutions 1) 

1C , component’s memory requirement and 2) 2C , 
component’s secondary storage requirement. 

Chromosomes that were generated may violate these 
constraints, making the placement infeasible. However, to 
fully discard these chromosomes from the population is 
unaffordable, as the chromosome may contain some useful 
building blocks in its genes. This is important in order to 

 
Fig. 4.  : An example of gene and chromosome encoding scheme with 10 SaaS components and 10 data chunks 
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produce fitter children for the next generations. Therefore, to 
handle this situation, the following strategy is applied to 
these infeasible chromosomes.  A penalty will be imposed to 
the fitness value of chromosomes that have violated  1C  
and/or 2C  such that any infeasible chromosome will always 
have a lower fitness value than any feasible chromosome. 
The fitness function is defined as follow: 
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                      (5) 
where )(* PopETET is the minimum value of Estimate 

Total Execution Time in a population, Pop  , and it is 
defined as: 

( ))(min)(* XETETPopETET =          (6)  
where X is a solution in the population, PopX ∈ . 
Equation 5 guarantees that feasible chromosomes always 

have a fitness value greater 0.5 and infeasible chromosomes 
always have a fitness value less than 0.5, and that for 
infeasible chromosomes the more constraints are not 
satisfied, the less their fitness values are. 

V. EVALUATION 
The GA described above has been implemented and 

tested. The programming language used was Microsoft .NET 
Visual Studio C++ 6.0. The test was focused on the 
scalability of the GA. Two sets of experiments were done. 
One set of experiments was to look at how the computation 
time of the GA increases when the scale of the Cloud 
increases; another was to find the increasing trend of the 
computation time of the GA when the number of software 
components and data chunks increases.   

The experiment was conducted on several randomly 
generated SaaS placement problems with five to 20 
components and data chunks. The Cloud was randomly 
created as well. The attributes of the nodes, including 
computation servers and storage servers, were randomly 
generated using the models presented in [18] [19].  

A. Experiments on the size of Cloud network 
This experiment was to study the relationship between the 

computation time and the size of the cloud network. In this 
experiment, we tested the GA for a Cloud that contained 
from 200 to 1200 servers, with an increment of 200. The 
numbers of SaaS components and data chunks were both 
fixed at 10. The parameters setting for the GA is listed in 
Table III and the characteristics of the problem are shown in  
Table V. 

The experiments were carried out on a desktop computer 
with 2.33 GHz Intel Core 2 Duo CPU and 2GB RAM. Table 
V shows the statistic of the experimental results. 

Considering the nature of the GA, each of the test cases was 
repeated 10 times. The test results include the minimal, 
maximal and average values of estimated total execution 
time (ETET) of the SaaS based on its placement, and the 
minimal, maximal, and average computation times spent on 
finding the placement solution for each of the 
configurations. Fig. 7 visualises the average computation 
time taken on finding the solution for each of the test cases. 
It can be seen that the computation time of the GA appears 
to grow close to linearly with the size of the Cloud. 

B. Experiments on the number of SaaS components 
This experiment was to observe the computation time 

when the number of SaaS components and data chunks 
increase. The numbers of SaaS components and data chunk 
were set from five to 20 with an increment of five. The cloud 
contained up to 600 computation servers and storage servers. 
The same server’s capacities and network were used in each 
test case.  

All the experiments were conducted in a desktop 
computer with 2.66 GHz Intel Core 2 Duo CPU and 3.23GB 
RAM. For this experiment, the parameter settings used for 
the GA are listed in Table IV. The test cases, its 
configurations, the statistical results of the solutions and 
computation times taken are shown in Table VI. 
Experiments for each test case were conducted for 10 times. 
Fig. 8 shows the average computation time taken on finding 
the solutions. The result shows that the computation time 
increased close to linearly with the number of components.  

 

 

 

TABLE III 
PARAMETER SETTINGS FOR EXPERIMENTS ON 

THE SIZE OF CLOUD NETWORK 
Parameter Value/Condition 

Population size 150 
Initial population Randomly generated solutions 
Crossover probability 0.95 
Mutation probability 0.15 
Maximum generation 200 
Termination condition Maximum generation 

TABLE IV 
PARAMETER SETTINGS FOR EXPERIMENTS ON 

THE NUMBER OF SAAS COMPONENTS 
Parameter Value/Condition 

Population size 150 
Initial population Randomly generated solutions 
Crossover probability 0.95 
Mutation probability 0.15 
Termination condition No improvement for the best 

individual in ten consecutive 
generations 
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VI. CONCLUSION AND FUTURE WORK 
This paper has presented the problem formulation and 

modelling of a composite SaaS placement problem on 
clusters of Cloud physical servers. The problem can be 
classified as an optimisation problem where the aim is to 
optimise the performance of the SaaS based on its estimated 
execution time. A penalty-based GA is used, and the GA is 
designed in such way that it considers not only the 
placement of the software components of a SaaS, but the 
placement of data of the SaaS as well. We believe that our 
solution is the first attempt on the composite SaaS placement 
problem considering data storage in the Cloud. Based on the 
experiments conducted, the GA always produces a feasible 
solution for all the test problems in all the experiments. It 
also can be seen that the proposed GA is scalable. The 
computation time increases close to linearly when the size of 
the Cloud increases and when the number of components is 
increased.  

Our work can be improved in a number of ways. First, 

although the GA has proved its scalability, the computation 
time taken in finding the solutions can be further improved. 
This can be done by implementing the GA in a parallel 
manner. The network can be decomposed into several 
segments, and the solution can be executed in parallel based 
on the segmentations.  

Second, our technique is implemented in a centralised 
location. With large size of Cloud networks, better 
performance of the solution may be achieved if the 
technique is implemented in several decentralised locations 
based on Cloud providers’ need. However, further research 
is needed to determine the suitability of the decentralised 
strategy with SaaS model in order to improve the 
performance of SaaS in Cloud.  
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TABLE V 
EXPERIMENTAL RESULTS OF THE GA ON THE SIZE OF CLOUD NETWORK 

Test 
Case 

Problem Size ETET (s) Computation Time (mins) 

DP ∪  SC DC Min Max Ave StDev Min Max Ave StDev 
1 200 10 10 1298.68 1515.61 1414.01 63.548 12 12 12 0 
2 400 10 10 1264.57 1554.34 1397.44 97.05 72 75 73.3 0.95 
3 600 10 10 1234.64 1806.42 1375.32 171.57 149 155 151.1 2.01 
4 800 10 10 1204.23 1383.04 1319.49 63.655 275 285 278.2 2.82 
5 1000 10 10 1247.18 1538.13 1340.53 93.375 379 393 385 4.27 
6 1200 10 10 1199.03 1376.68 1316.23 50.963 608 620 613.6 4.2 

TABLE VI 
EXPERIMENTAL RESULTS OF THE GA ON THE NUMBER OF SAAS COMPONENTS 

Test 
Case 

Problem Size ETET (s) Computation Time (mins) 

DP ∪   SC DC Min Max Ave StDev Min Max Ave StDev 
1 600 5 5 659.486 727.438 684.811 20.02 10 24 14.1 4.56 
2 600 10 10 861.877 1132.87 986.522 93.53 45 103 71.5 20.81 
3 600 15 15 1322.49 1579.95 1407.13 90.366 66 166 100.3 34.0 
4 600 20 20 1154.01 1534 1398.23 105.6 82 192 113.1 34.1 
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